

User's Guide

PCle8g3 S5 Family

PCIe Gen3 x8 boards with Stratix V FPGA and 10G / 40G ports

Date: 2017 January 04

Rev.: 0001

EDT TM and Engineering Design Team TM are trademarks of Engineering Design Team, Inc. All other trademarks, service marks,
and copyrights are the property of their respective owners [†] .
© 1997-2015 Engineering Design Team, Inc. All rights reserved.

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain:
Zerif Technologies Ltd.
Winnington House, 2 Woodberry Grove
Finchley, London N12 0DR
+44 115 855 7883, info@zerif.co.uk
www.zerif.co.uk

EDT, Inc. 2

Terms of Use Agreement

Definitions. This agreement, between Engineering Design Team, Inc. ("Seller") and the user or distributor ("Buyer"), covers the use and distribution of the following items provided by Seller: a) the binary and all provided source code for any and all device drivers, software libraries, utilities, and example applications (collectively, "Software"); b) the binary and all provided source code for any and all configurable or programmable devices (collectively, "Firmware"); and c) the computer boards and all other physical components (collectively, "Hardware"). Software, Firmware, and Hardware are collectively referred to as "Products." This agreement also covers Seller's published Limited Warranty ("Warranty") and all other published manuals and product information in physical, electronic, or any other form ("Documentation").

License. Seller grants Buyer the right to use or distribute Seller's Software and Firmware Products solely to enable Seller's Hardware Products. Seller's Software and Firmware must be used on the same computer as Seller's Hardware. Seller's Products and Documentation are furnished under, and may be used only in accordance with, the terms of this agreement. By using or distributing Seller's Products and Documentation, Buyer agrees to the terms of this agreement, as well as any additional agreements (such as a nondisclosure agreement) between Buyer and Seller.

Export Restrictions. Buyer will not permit Seller's Software, Firmware, or Hardware to be sent to, or used in, any other country except in compliance with applicable U.S. laws and regulations. For clarification or advice on such laws and regulations, Buyer should contact: **U.S. Department of State, Washington, D.C., U.S.A.**

Limitation of Rights. Seller grants Buyer a royalty-free right to modify, reproduce, and distribute executable files using the Seller's Software and Firmware, provided that: a) the source code and executable files will be used only with Seller's Hardware; b) Buyer agrees to indemnify, hold harmless, and defend Seller from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution of Buyer's products containing Seller's Products. Seller's Hardware may not be copied or recreated in any form or by any means without Seller's express written consent.

No Liability for Consequential Damages. In no event will Seller, its directors, officers, employees, or agents be liable to Buyer for any consequential, incidental, or indirect damages (including damages for business interruptions, loss of business profits or information, and the like) arising out of the use or inability to use the Products, even if Seller has been advised of the possibility of such damages. Because some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to Buyer. Seller's liability to Buyer for actual damages for any cause whatsoever, and regardless of the form of the action (whether in contract, product liability, tort including negligence, or otherwise) will be limited to fifty U.S. dollars (\$50.00).

Limited Hardware Warranty. Seller warrants that the Hardware it manufactures and sells shall be free of defects in materials and workmanship for a period of 12 months from date of shipment to initial Buyer. This warranty does not apply to any product that is misused, abused, repaired, or otherwise modified by Buyer or others. Seller's sole obligation for breach of this warranty shall be to repair or replace (F.O.B. Seller's plant, Beaverton, Oregon, USA) any goods that are found to be non-conforming or defective as specified by Buyer within 30 days of discovery of any defect. Buyer shall bear all installation and transportation expenses, and all other incidental expenses and damages.

Limitation of Liability. In no event shall Seller be liable for any type of special consequential, incidental, or penal damages, whether such damages arise from, or are a result of, breach of contract, warranty, tort (including negligence), strict liability, or otherwise. All references to damages herein shall include, but not be limited to: loss of profit or revenue; loss of use of the goods or associated equipment; costs of substitute goods, equipment, or facilities; downtime costs; or claims for damages. Seller shall not be liable for any loss, claim, expense, or damage caused by, contributed to, or arising out of the acts or omissions of Buyer, whether negligent or otherwise.

No Other Warranties. Seller makes no other warranties, express or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose, regarding Seller's Products or Documentation. Seller does not warrant, guarantee, or make any representations regarding the use or the results of the use of the Products or Documentation or their correctness, accuracy, reliability, currentness, or otherwise. All risk related to the results and performance of the Products and Documentation is assumed by Buyer. The exclusion of implied warranties is not permitted by some jurisdictions. The above exclusion may not apply to Buyer.

Disclaimer. Seller's Products and Documentation, including this document, are subject to change without notice. Documentation does not represent a commitment from Seller.

EDT, Inc.

Contents

Contents	4
Overview	7
Related Resources	8
Care and Cautions	8
Installation and the EDT Installation Package	9
The PCD Device Driver	9
Firmware: FPGA Configuration (.bit) Files	9
Applications and Utilities	10
Building or Rebuilding an Application	11
Configuring the S5	11
Unit Number	11
FPGA	12
Initialization and Setup	13
Initializing Memory and Data Path	13
Initializing Ports	13
Querying the Transceivers	14
Time Code	14
Framing	14
Hardware	15
Block Diagrams	15
Ports and LED Status Indicators	16
Registers, UI	18
0x00-0x7F Indirect	18
0x00 Command	18
0x03 Interrupt Status	18
0x04 Interrupt Enable	18
0x0D Exended Configuration	19
0x0F Configuration	19
0x10-11 DMA Channel Enable	20
0x16–17 Least Significant Bit First	20
0x18–19 Underflow	20
0x1A-1B Overflow	20
0x60-62 Extended Indirect Register Address	
0x63 Extended Indirect Register Data	21
0x64 Serial Master Interface Status	21
0x65 Serial Master Interface Read [7-0]	22
0x66 Serial Master Interface Register Address [7–0]	
0x67 Serial Master Interface Write [7–0]	22
0x68 Serial Master Interface Read [15–8]	22
0x69 Serial Master Interface Register Address [15–8]	22
0x6A Serial Master Interface Write [15–8]	23
0x6B Reference Clock Control	23
0x6C Sync Trigger Control and Status	23
0x6D SPI Data	23
0x6E SPI Status and Control	24
0x6F SPI Strobe	
0x7C-7D FPGA Configuration File Design ID	24
0x7E FPGA Configuration File Version String	
0x7F Board ID [Reserved]	
Registers, UI	26

0x000000-0x7FFFFF BAR1 Memory-Mapped	
0x000010 Data Path and Memory Control	26
0x000014 Memory Status	
0x000018 W PRBS [Reserved]	27
0x00001C W PRBS 2 [Reserved]	27
0x000024 Memory Loop Size	27
0x000028 Memory Information	27
Registers, Port: Ports 0–3 (SFPs)	28
0x80–0x9F Indirect	
0x80, 88, 90, 98 SFP Configuration and Status	
0x82, 8A, 92, 9A Port Status	
0x87, 8F, 97, 9F Port Information	
Registers, Port: Ports 0–3 (SFPs)	
0x800000–0x837FFF BAR1 Memory-Mapped	
0x800000, 810000, 820000, 830000 Receive Framer Status and Control	
0x800004, 810004, 820004, 830004 Receive Filter	
0x800008, 810008, 820008, 830008 Transmit Framer Control [Reserved]	
0x80000C, 81000C, 82000C, 83000C Line Rate / Protocol Control	
0x800010, 810010, 820010, 830010 Synchronization Control	
0x800014, 810014, 820014, 830014 Frame Statistics Count Control	
0x800018, 810018, 820018, 830018 Transmit National Byte	
0x80001C, 81001C, 82001C, 83001C Transmit Test Pattern	
0x800020, 810020, 820020, 830020 Last B1 Error	
0x800024, 810024, 820024, 830024 B1 Error Count	
0x800024, 810024, 820024, 830024 BT Effor Count	
0x80002C, 81002C, 82002C, 83002C M1 Error Count	
0x800030, 810088, 820088, 830088 Loss of Frame Count	
0x80003C, 81003C, 82003C, 83003C Demux Bitmask	
0x800040, 810040, 820040, 830040 Demux Bitmask Readback	
0x800060, 810060, 820060, 830060 Detailed Port Status	
0x800064, 810064, 820064, 830064 Transceiver Reconfiguration Address and Control	
0x800068, 810068, 820068, 830068 Transceiver Reconfiguration Write Data	
0x80006C, 81006C, 82006C, 83006C Transceiver Reconfiguration Read Data	
0x800074, 810074, 820074, 830074 Frequency Counter Enable	
0x800078, 810078, 820078, 830078 Receive Frequency Counter	
0x80007C, 81007C, 82007C, 83007C Transmit Frequency Counter	
0x800080, 810080, 820080, 830080 PRBS Mode	
0x800084, 810084, 820084, 830084 PRBS Control 0	
0x800088, 810088, 820088, 830088 PRBS Control 1	
0x80008C, 81008C, 82008C, 83008C PRBS Control 2 [Reserved]	
0x800090, 810090, 820090, 830090 PRBS Control 3 [Reserved]	
0x800094, 810094, 820094, 830094 PRBS Control 4 [Reserved]	
Registers, Port: Port 4 (QSFP)	
0xA0-0xA7 Indirect	
0xA0 QSFP Configuration and Status	
0xA1 Port Enable	
0xA2 Port Status	
0xA3 QSFP Status 2 [Reserved]	
0xA7 Port Information	
Registers, Port: Port 4 (QSFP/+)	43
0x840010-0x840098 BAR1 Memory-Mapped	
0x840010 Synchronization Control	
0x840014 Frame Count Control [Reserved]	43

EDT, Inc.

	0x840060 Detailed Port Status	43
	0x840064 Transceiver Reconfiguration Address and Control	44
	0x840068 Transceiver Reconfiguration Address and Control	44
	0x84006C Transceiver Reconfiguration Address and Control	44
	0x840074 Frequency Counter Enable	44
	0x840078 Receive Frequency Counter	44
	0x84007C Transmit Frequency Counter	
	0x840080 PRBS Mode	45
	0x840084 PRBS Control 0	45
	0x840088 PRBS Control 1	
	0x84008C PRBS Control 2 [Reserved]	46
	0x840090 PRBS Control 3 [Reserved]	46
	0x840094 PRBS Control 4 [Reserved]	
Revision I	_og	48

PCIe8g3 S5 Family Overview

PCle8g3 S5 Family

Overview

The PCIe8g3 S5 ("S5") family is a group of multiport, multirate interfaces. Currently this family includes two versions...

- The S5 10G so named because it can support up to four 10G transceivers.
- The S5 40G so named because it can support one 40G transceiver, plus two 10G transceivers.

Each version includes...

- One Altera Stratix V GX FPGA, with multiple options available;
- One eight-lane PCIe Gen 3 DMA interface;
- Two independent 4 GB banks of DDR3 DRAM, for a total of 8 GB;
- Four programmable oscillators (one per port);
- Support for a jitter-attenuated recovery clock; and
- A variety of transceiver options.

Table 1 shows the transceiver options (by port) for each version.

Table 1. S5 10G and 40G - options by port

S5	Port	DMA channel	Transceiver	Wavelength(s)	Signal(s)*
10G	0	0	SFP	1550, 1310, 850 nm	1GbE; OC3/12/48 (STM1/4/16); OTU1
			SFP+	1550, 1310 nm	10GbE; OC 192 (STM64); OTU2/2e/2f
			SFP+	850 nm	10GbE only
	1	1	[same as port 0]		
	2	2	[same as port 0]		
	3	3	[same as port 0]		
40G	0	0	SFP	1550, 1310, 850 nm	1GbE; OC3/12/48 (STM1/4/16); OTU1
			SFP+	1550, 1310 nm	10GbE; OC 192 (STM64); OTU2/2e/2f
			SFP+	850 nm	10GbE only
	1	1	[same as port 0]		
	4	$0 \text{ (when sel_port } = 4)$	QSFP+	850 nm	40GbE

 $^{^{\}star}$ SONET (OC3/12/48) and SDH (STM1/4/16) signal names are used interchangeably.

For signal standards, see Related Resources on page 8.

For port locations and other board features, see Hardware on page 15.

PCIe8g3 S5 Family Overview

Related Resources

To find product-specific information that is related to a particular EDT product, go to www.edt.com and open the relevant product page. There you'll see links to that product's datasheet (specifications), user's guide, and other resources.

The resources may be helpful or necessary for your applications.

EDT Resources

Application programming interface (API) www.edt.com/api/
 Installation packages (Windows, Linux, Mac) www.edt.com/software

PCle8g3 S5-10G datasheet (specifications)
 www.edt.com/pcie8g3s5-10g.html

PCle8g3 S5-40G datasheet (specifications)
 www.edt.com/pcie8g3s5-40g.html

Time Distribution datasheet (specifications) / user's guide www.edt.com/timedist.html

Static Discharge Kit instructions
 www.edt.com/static

Third-Party Resources

Standards / Specifications

PCI Express (PCIe)
 www.pcisig.com

• IRIG-B irigb.com

International Telecommunications Union (ITU) / Optical Transport Network (OTN) / www.itu.int

G.709/Y.133103/2003
• Ethernet framing (IEEE 802-3) www.ieee802.org/3/

Parts

FPGA: Altera Stratix V GX
 www.altera.com

Care and Cautions

Although EDT products are built to specifications which allow them to withstand a variety of extreme conditions, they are still high-performance components which require proper care for best results. To protect them and your equipment, follow all recommended instructions for care and cautions, including those in the EDT-provided static discharge kit.

For links to datasheet specifications and EDT static discharge kit instructions, see Related Resources.

Installation and the EDT Installation Package

To physically install your S5 board, follow the steps below while referring to Hardware on page 15.

- 1. Since each transceiver can be unique, notate the position of each transceiver on your S5 board so you can return each one to its proper place later.
- 2. Remove the transceivers to enable the board to be inserted into the host system.
- 3. Insert the board into the host system.
- 4. Working through the back panel on the host system, return each transceiver to its original position on the S5 board.

NOTE

We recommend powering off the board before replacing any transceiver, despite manufacturers' claims that transceivers are hot-swappable.

Now you're ready to review the resources included in the EDT installation package. In addition to the files listed below, custom FPGA configuration files can be requested.

The PCD Device Driver

Your EDT installation package contains the PCD device driver – the software that runs on the host computer and allows the host operating system to communicate with the S5. The driver is loaded into the kernel at installation and thereafter runs as a kernel module. The driver name and subdirectory is specific to each supported operating system, and the installation script automatically installs the appropriate device driver in the appropriate way for your operating system.

Firmware: FPGA Configuration (.bit) Files

Your EDT installation package includes firmware in the form of FPGA configuration (.bit) files. The correct .bit file for your specific S5 board and FPGA is located and loaded as below.

		For the .bit file named	Which is loaded
The FPGA on your S5 board	flash/FPGApart#	pe8s5_4p.bit	Automatically, from flash memory

If you need to reload the firmware due to corruption or an update, see Configuring the S5 on page 11.

Applications and Utilities

In addition to the above resources, the EDT installation package includes application and utility files that you can use to initialize and configure the board, access the registers, and perform basic testing. In many cases, C or C++ source is provided so that you can use the files as starting points to write your own applications. The most commonly useful files are described below.

NOTE

For a link to the latest installation packages, see Related Resources on page 8. For new installations, use the latest package. For existing applications, to avoid version problems, upgrade only if you have a specific reason to do so.

These S5-specific files are included in the libs5 or libocx directory of your EDT installation package...

fourp Utility to set up and initialize the S5.

fourp.cpp Source file for the fourp utility.

EdtS5Xcvr.cpp C++ object describing EDT Stratix 5 FPGA's transceiver.

EdtS5Xcvr.h Include file for the above C++ object.

EdtS5Mem.cpp C++ object describing EDT Stratix 5 DDR3 memory and data flow.

EdtS5Mem.h Include file for the above C++ object.

EdtS5.cpp C++ object describing any EDT board based on Stratix 5 FPGA.

Edt4P.cpp Include file for the above C++ object.

Edt4P.cpp C++ object describing EDT S5 board.

Edt4P.h Include file for the above C++ object.

edt_fourp.h Include file.

In the future, the S5 is scheduled to be supported by such additional applications as...

OCXSnap Example application that captures data from the S5 board and transfers it to disk

for testing or verification.

OCXSnap.cpp C source for OCXSnap.

OCXPlay Example application that outputs the data captured by OCXSnap from the disk for

testing or verification.

OCXPlay.cpp C source for OCXPlay.

ReadXFPSFP Example application that queries the state of the transceiver modules. For details,

see Initializing Ports on page 13.

ReadXFPSFP.cpp C source for ReadXFPSFP.

EdtSFP.cpp C library routines used by ReadXFPSFP or available for you to use in your own

application.

EdtSFPPlus.cpp C library routines used by ReadXFPSFP or available for you to use in your own

application.

Sample Applications

wr16

rd16 For DMA channels – performs simple multichannel ring buffer input.

simple_read Performs DMA input without using ring buffers. Data is therefore subject to

interruptions, depending on system performance.

For DMA channels – performs simple multichannel ring buffer output.

simple_write Performs DMA output without using ring buffers. Data is therefore subject to

interruptions, depending on system performance.

PCIe8g3 S5 Family Configuring the S5

simple_getdata Serves as an example of a variety of DMA-related operations, including reading the

data from the connector interface and writing it to a file, as well as measuring input

rate.

simple_putdata Serves as an example of a variety of DMA-related operations, including reading

data from a file and writing it out to the connector interface.

test_timeout In typical operation, timeouts cancel DMA transfers. This application exemplifies

giving notification of timeouts, without canceling DMA.

Utilities

gstemp Utility for monitoring the temperature of the S5.

pdb Enables interactive reading and writing of the UI FPGA registers.

set_si570 Programs the S5 reference clock(s) to specific frequencies used by the S5 FPGA

for input and output.

timing_test Tests the timecode input.

Building or Rebuilding an Application

In your EDT installation package, executable and PCD source files are in the top-level directory. Therefore, if you need to build or rebuild an application, run make in that directory.

Windows users must install a C compiler; we recommend the Microsoft Visual C compiler for Windows. Linux users can use the <code>gcc</code> compiler typically included with the Linux installation. If you use Windows and you wish to use <code>gcc</code>, contact tech@edt.com.

After you build or rebuild an application, use the --help command line option for a list of usage options and descriptions.

Configuring the S5

The S5 has one FPGA, called the PCIe FPGA. This section explains how to...

- 1. Find the unit number (by default, 0) assigned to your S5 board by your system.
- 2. Configure the FPGA with the appropriate FPGA configuration file.
- 3. Configure the physical ports and the DMA channels.

To implement these steps and conduct loopback testing (see Basic Testing [main section - was between Framing and Hardware - no looptest now, but will be later] on page 49), use this section.

To begin data acquisition, further initialization is required (see Initialization and Setup on page 13).

Unit Number

To see which EDT unit(s) are in your host system and to find their unit numbers, run...

pciload

...with no arguments, and the screen will display information about each one.

PCIe8g3 S5 Family Configuring the S5

FPGA

At power-on, the firmware (FPGA configuration or .bit file) is installed automatically via nonvolatile flash memory. Typically you do not need to reconfigure or update the firmware unless...

- you are asked to do so by EDT during a support call or email exchange;
- · you install a new driver; or
- the firmware becomes corrupted.

To verify the loading of the correct FPGA configuration file for your S5 board...

- 1. Navigate to the directory in which you installed the driver. The default locations are...
 - For Windows, \EDT\pcd
 - For Linux or Mac, /opt/EDTpcd
- 2. At the prompt, enter...

```
pciload verify
```

...to compare the FPGA configuration file in the installation package with the one already loaded in flash memory. If multiple boards are installed, enter the unit number after the -u option...

```
pciload -u unit number verify
```

If the dates and revision numbers match, there is no need to upgrade. If they differ, you can proceed through the steps below to upgrade the flash memory.

3. At the prompt, enter...

```
pciload update
```

4. Shut down the operating system; turn the host computer off, and then on again. The board reloads firmware from flash memory only during powerup. Thus, after running pciload, the new FPGA configuration file is not in the FPGA until the system has been power-cycled; simply rebooting is not adequate.

PCIe8g3 S5 Family Initialization and Setup

Initialization and Setup

PCle8g3 S5 boards can be initialized and set up with the fourp utility. The recommended sequence is:

- 1. Initialize the DDR3 memory and set up the data path.
- 2. Initialize the ports as needed.

NOTE Some setup (such as of the memory and data path) affects all channels, so implement setup with caution.

Initializing Memory and Data Path

To prepare for DMA, the data path must be initialized. Doing so includes setting the data path direction, determining whether data will be directed to DMA, and verifying that the DDR3 memory PHY has been initialized.

In the default FPGA configuration file provided with your S5 board, the two DDR3 memory banks are divided into two logical memory banks. In register 0x000010 Data Path and Memory Control, when port 0, 1, 2, or 3 is set, each port thus set is assigned a logical memory bank; when port 4 is set, then the four logical memory banks are combined into a single logical bank. In the same register, the latter result can be achieved with the fourp utility by entering...

```
fourp -rm -p 0 -D -rx
```

...where the flags have the following effects...

- The -rm flag resets the DDR3 PHY.
- The -p 0 flag sets the memory for ports 0, 1, 2, and 3.
- The -D flag sets the data path for DMA.
- The -rx flag sets the data path for receiving data.

NOTE

The -D flag always should be used with either the -rx or the -tx flag (-rx and -tx are mutually exclusive) and will affect all ports.

Initializing Ports

Each port can be set up and used independently by using the fourp utility and adding the flags...

```
-p x // to determine which port is configured;
```

-R $\,x\,$ // to determine which rate is set.

For example, you could enter these three commands, in any sequence...

```
fourp -p 0 -R stm64
fourp -p 1 -R otu2f
fourp -p 2 -R stm1
```

...in order to set port 0 to STM64, port 1 to OTU2f, and port 2 to STM1.

NOTE

When you specify a rate, the <code>fourp</code> utility does not verify whether a port's transceiver can support that rate. Therefore, you must be aware of which transceiver is in each port (the board can read this information for you) and what each transceiver's capabilities are.

Using the fourp utility in this way will set the respective port's reference clock and reconfigure the FPGA's SERDES appropriately; however, it will not set up the relevant port's framing register (0x800000, 810000, 820000, 830000 Receive Framer Status and Control) or demux bitmap register (0x80003C, 81003C, 82003C, 83003C Demux Bitmask), nor will it enable the relevant channel for DMA in registers 0x00 Command and 0x10–11 DMA Channel Enable.

PCIe8g3 S5 Family Framing

Querying the Transceivers

To query the transceiver on a specified port, you can use fourp -p x with these flags...

```
-w // to query the received optical power
```

 ${\scriptscriptstyle -C}$ // to query the temperature

For example, you could enter such commands as...

```
fourp -p 0 -C // to query port 0 for received optical power fourp -p 1 -w // to query port 1 for temperature
```

...without disrupting the other ports or the DMA.

For details, see the manufacturer's website for the transceivers you are using (see Related Resources on page 8).

Time Code

The S5 uses the same timecode interface as the EDT Time Distribution board. For details, see these registers...

- Register 0x6D SPI Data
- Register 0x6E SPI Status and Control
- Register 0x6F SPI Strobe

...and consult the Time Distribution user's guide (Related Resources on page 8).

Framing

The S5 default firmware (FPGA configuration file) supports framing capabilities as described below.

For 10GbE and 40GbE, currently only clear-bit data is supported.

For OTN and OC / STM, framing headers are included in the data transferred during DMA. If framing is enabled, the board searches and locks onto incoming SONET / SDH frames after detecting the presence of A1 and A2 header patterns at 125 ms intervals. The algorithm sequence is:

- 1. Search. The board searches for A1 and A2 header patterns until it sees a match; then it goes to Check.
- 2. Check. The board checks for three consecutive SONET / SDH frames at 125-microsecond intervals with the A1 and A2 header patterns in the proper position, before declaring Lock.
- 3. Lock. Once locked, incoming SONET / SDH frames are collected and forwarded to the host. The board continues to check for the A1 and A2 header patterns, and remains in this state until the A1 and A2 header patterns are lost. When the patterns are lost, it enters the Flywheel state.
- 4. Flywheel. If the A1 and A2 header patterns are not seen for three consecutive frames, the board returns to Search; if it finds them, it returns to Lock. SONET / SDH frames are collected and forwarded to the host in this state as well.

PCIe8g3 S5 Family Hardware

Hardware

The S5 works as a standalone board. Block diagrams and ports for both versions (10G and 40G) are shown below.

Block Diagrams

Figure 1 and Figure 2 show the respective architecture of the 10G version and the 40G version.

Figure 1. S5 10G

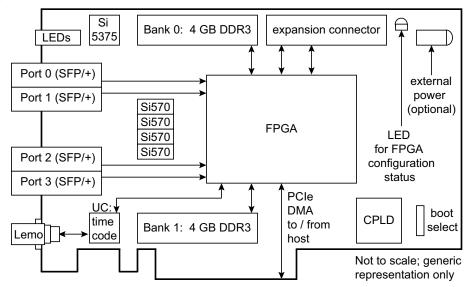
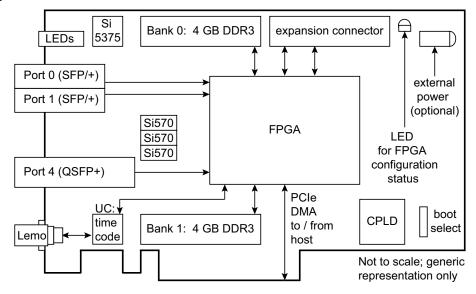



Figure 2. S5 40G

PCIe8g3 S5 Family Hardware

Ports and LED Status Indicators

Figure 3 and Figure 4 show closeup images of the connectors and the LED status indicators.

Figure 3. S5 10G ports and LED status indicators

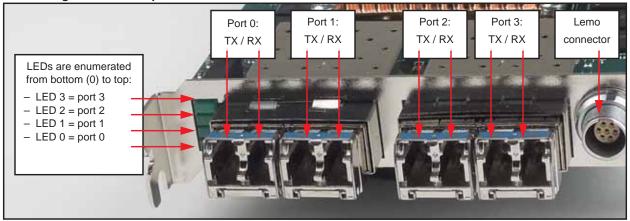
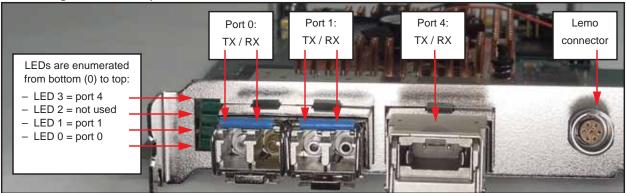



Figure 4. S5 40G ports and LED status indicators

Each LED indicates the status of its respective port – namely, whether the port is ready to receive, is receiving, and is framing a signal. If a port is working properly in all three areas, its LED is steady green. If not, its LED will be blinking.

Table 2 summarizes the LED behaviors.

Table 2. LED behaviors

LED behavior	FPGA receive clock locked / ready to receive?	Signal being received?	Signal being framed?
Dim blinking	No	No	No
Bright blinking	Yes	Yes	No
Bright steady	Yes	Yes	Yes

APPENDIX A: Registers for PCle8g3 S5

For the PCle8g3 S5 10G/40G, the registers are divided into two main categories and register spaces:

- the user interface (UI) register space, for functions that are not port-specific; and
- the port register space, for functions that are port-specific.

Each space contains both indirect and BAR1 memory-mapped registers, and the port register space is further divided so each port has its own indirect and BAR1 registers. The addresses are shown in Table 3.

Table 3. Addresses – UI and port registers (indirect and BAR1 memory-mapped)

	Indirect	BAR1 memory-mapped
UI registers (non-port-specific)		
Any port	0x00-0x7F	0x000000-0x7FFFFF
Port registers (port-specific)		
Port 0	0x80-0x87	0x800000-0x807FFF
Port 1	0x88-0x8F	0x810000-0x817FFF
Port 2	0x90-0x97	0x820000-0x827FFF
Port 3	0x98-0x9F	0x830000-0x837FFF
Port 4	0xA0-0xA7	0x840000-0x847FFF

The port registers are defined for port 0, and since each of the other ports has identical registers within its respective memory space, a C macro is included in edt_stratix5.h to help you locate a specific register related to a specific port. The macro, which works for both indirect and BAR1 memory-mapped addresses, is defined as...

STRATIX5_REGXL8(register_address, port_number)

...with the italicized variables being replaced by the appropriate register address and port number, as shown in the access information provided with each register below.

Registers, UI

0x00-0x7F Indirect

0x00 Command

		Access / Notes:	8-bit read-write / PCD_CMD
Bit	Access	Name	Description
7–4	RW	PCD_STAT_INT_EN	Enables interrupts as defined in registers 0x03 Interrupt Status and 0x04 Interrupt Enable.
3	RW	CMD_EN	Set this bit to enable the required DMA channels in 0x10–11 DMA Channel Enable for DMA. When clear, resets all DMA channels, flushes all FIFOs, and clears all under- and overflow bits.
2–0	_	-	Reserved.

0x03 Interrupt Status

UXU3	interru	pt Status	
		Access / Notes:	8-bit read-only / PCD_STAT
			This register is connected to 1Hz test interrupt as an example of interrupts generated by the UI FPGA on the main board.
Bit	Access	Name	Description
7–4	R only	PCD_STAT_INT	Interrupt bits for the status bits. If the corresponding bit is asserted in 0x00 Command, then the corresponding bit of these four can be asserted to cause a PCI bus interrupt.
			The PCI bus interrupt then is caused when the corresponding PCD_STAT signal [bits 3–0] is asserted. To reset the interrupt, disable and re-enable the appropriate PCD_STAT_INT_EN bit [7–4] in 0x00 Command.
3–0	R only	PCD_STAT	The state of user-definable STAT input signals as last sampled.

0x04 Interrupt Enable

		Access / Notes:	8-bit read-write / PCD_STAT_POLARITY
			This register is connected to 1Hz test interrupt as an example of interrupts generated by the UI FPGA on the main board.
Bit	Access	Name	Description
7–5	_	_	Reserved.
4	RW	PCD_STAT_INT_ ENA	Provides global enable or disable for all interrupt bits [7–4] in 0x03 Interrupt Status above, allowing the driver to disable and re-enable them in one operation without altering their states. A value of 1 enables the interrupts; a value of 0 disables them.
3–0	-	[no name]	Reserved.

0x0D Exended Configuration

Access / Notes: 8-bit read-write / PCD_EXT_CONFIG

Registers 0x0D, 0x0F, and 0x16 all can affect how data is ordered.

BitAccessNameDescription7-1-[no name]Reserved.

RW WSWAP Word swap bit; swaps two 32-bit words in one 64-bit data word, so that word 0 is transferred before word

1. Does not change the position of the bits within each word.

0x0F Configuration

Access / Notes: 8-bit read-write / PCD_CONFIG

Registers 0x0D, 0x0F, and 0x16 all can affect how data is ordered.

BitAccessNameDescription7-4--Reserved.3RWSSWAPShort swap bit; swaps the two 16-bit short words in one 32-bit data word, so that short 0 is transferred before short 1. Does not change the order of the bits within each short.2-1--Reserved.0RWBSWAPByte swap bit; swaps bytes 0 and 1, and also bytes 2 and 3, in a 32-bit data word, so that the bytes are positioned 1, 0, 3, 2. Does not change the position of the bits within each byte.

Below is the structure of a 64-bit data word, with no swapping in effect.

Bits: 63-56 55-48 47–40 39–32 31–24 23-16 15-8 7-0 Bytes: 7 5 2 0 Shorts: 3 2 0 Words: 0

Below are the data ordering sequences achieved by setting or unsetting, in various combinations, the bits WSWAP, SSWAP, and BSWAP.

WSWAP	SSWAP	BSWAP	Resultant Byte Order
0	0	0	7, 6, 5, 4, 3, 2, 1, 0
0	0	1	6, 7, 4, 5, 2, 3, 0, 1
0	1	1	4, 5, 6, 7, 0, 1 2, 3
1	1	1	0, 1, 2, 3, 4, 5, 6, 7
0	1	0	5, 4, 7, 6, 1, 0, 3, 2
1	0	0	3, 2 1, 0, 7, 6, 5, 4

0x10-11 DMA Channel Enable

Access / Notes: 16-bit read-write / SSD16_CHEN

Bit Access Name Description

15-0 RW CH_ENABLE[15-0] Set or clear the appropriate bit to enable or reset the corresponding DMA channel:

Set bit 12 to transmit data to port 4; clear to reset.
Set bit 11 to transmit data to port 3; clear to reset.
Set bit 10 to transmit data to port 2; clear to reset.
Set bit 9 to transmit data to port 1; clear to reset.
Set bit 8 to transmit data to port 0; clear to reset.
Set bit 4 to receive data from port 4; clear to reset.
Set bit 3 to receive data from port 3; clear to reset.
Set bit 2 to receive data from port 2; clear to reset.

- Set bit 1 to receive data from port 1; clear to reset.

- Set bit 0 to receive data from port 0; clear to reset.

0x16-17 Least Significant Bit First

Access / Notes: 16-bit read-write / SSD16_LSB

Registers 0x0D, 0x0F, and 0x16 all can affect how data is ordered.

Bit Access Name Description

15-0 RW LSB_FIRST[5-0] When set for a DMA channel, the least significant bit of the 32-bit data word is first, and the most

significant bit is last; when clear, the most significant bit of a 32-bit word is first.

0x18-19 Underflow

Access / Notes: 16-bit read-only / SSD16_UNDER

Bit Access Name Description

15-0 R only UNDERFLOW[12-0] A value of 1 in a bit indicates that the corresponding DMA channel's internal FIFO has underflowed

since the channel was last enabled. Underflow causes the corresponding DMA channel to transmit the last valid byte repeatedly until it receives new DMA data. To reset, clear and reenable the appropriate

channel (see 0x00 Command and 0x10-11 DMA Channel Enable).

0x1A-1B Overflow

Access / Notes: 16-bit read-only / SSD16_OVER

Bit Access Name Description

15–0 R only OVERFLOW[12–0] A value of 1 in a bit indicates that the corresponding DMA channel's internal FIFO has overflowed since

the channel was last enabled. Data received while the FIFO is in overflow is discarded. To reset, clear and reenable the appropriate channel (see 0x00 Command and 0x10–11 DMA Channel Enable).

0x60-62 Extended Indirect Register Address

Access / Notes: 24-bit read-write / [no name]

0x60 = bits 7-0; 0x61 = bits 15-8; 0x62 = bits 23-16.

Bit Access Name Description

23-0 RW [no name] This is the register address space for the extended indirect registers.

0x63 Extended Indirect Register Data

Access / Notes: 8-bit read-write / [no name]

Bit Access Name Description

7–0 RW [no name] This is the register data for the extended indirect registers.

- Writing this register writes data to the register addressed by 0x60-62.

- Reading this register reads the data addressed by 0x60-62.

0x64 Serial Master Interface Status

Access / Notes: 8-bit read-write / STRATIX5_I2C_DEVICE

Bit	Access	Name	Description
7	R only	SER_DEV_BSY	When set, the serial master is busy.
6	R only	SER_DEV_ACK_ FAIL	When set, the serial slave failed to respond to the last command.
5-0	RW	SER_DEV_ADDR	Descriptions for devices 0–20 are provided below.

0 = Port 0 reference clock (Si570).

1 = Port 1 reference clock (Si570).

2 = Ports 2 and 4 reference clock (Si570).

3 = Port 3 reference clock (Si570).

4 = Port 0 external PLL (Si5375).

5 = Port 1 external PLL (Si5375).

6 = Port 2 external PLL (Si5375).

7 = Port 3 external PLL (Si5375).

8 = Port 0 SFP/+ EEPROM.

9 = Port 1 SFP/+ EEPROM.

10 = Port 2 SFP/+ EEPROM and Port 4 QSFP EEPROM.

11 = Port 3 SFP/+ EEPROM.

12 = Port 0 SFP/+ diagnostics.

13 = Port 1 SFP/+ diagnostics.

14 = Port 2 SFP/+ diagnostics.

15 = Port 3 SFP/+ diagnostics.

16 = Port 0 SFP active copper PHY.

17 = Port 1 SFP active copper PHY.

18 = Port 2 SFP active copper PHY.

19 = Port 3 SFP active copper PHY.

20 = U2M reference clock (Si5375).

0x65 Serial Master Interface Read [7-0]

Access / Notes: 8-bit read-write / STRATIX5_I2C_READ_ADDR

Bit Access Name Description

7-0 RW [no name] This register [bits 7-0] works with 0x68 Serial Master Interface Read [15-8].

Write the register address on the serial slave that you wish to read.

Read the data returned from the register address.

0x66 Serial Master Interface Register Address [7–0]

Access / Notes: 8-bit read-write / STRATIX5_I2C_WRITE_ADDR

Bit Access Name Description

7–0 RW [no name] This register [bits 7–0] works with 0x69 Serial Master Interface Register Address [15–8].

Write the register address on the serial slave that you wish to read.

Read the register address.

0x67 Serial Master Interface Write [7-0]

Access / Notes: 8-bit read-write / STRATIX5_I2C_WRITE_DATA

Bit Access Name Description

7–0 RW [no name] This register works [bits 7–0] with 0x6A Serial Master Interface Write [15–8].

Write data to the serial slave.

0x68 Serial Master Interface Read [15-8]

Access / Notes: 8-bit read-write / STRATIX5_I2C_READ_DATA_UPPER

Bit Access Name Description

15–8 R only [no name] This register [bits 15–8] works with 0x65 Serial Master Interface Read [7–0].

Write the register address on the serial slave that you wish to read.

Read the data returned from the register address.

0x69 Serial Master Interface Register Address [15–8]

Access / Notes: 8-bit read-write / STRATIX5_I2C_WRITE_ADDR_UPPER

Bit Access Name Description

15–8 RW [no name] This register [bits 15–8] works with 0x66 Serial Master Interface Register Address [7–0].

Write the register address on the serial slave that you wish to read.

Read the register address.

0x6A Serial Master Interface Write [15-8]

Access / Notes: 8-bit read-write / STRATIX5_I2C_WRITE_DATA_UPPER

Bit Access Name Description

15–8 RW [no name] This register [bits 15–8] works with 0x67 Serial Master Interface Write [7–0].

Write data to the serial slave.

0x6B Reference Clock Control

Access / Notes: 8-bit read-write / STRATIX5_EXT_PLL

 Bit
 Access
 Name
 Description

 7
 RW
 [no name]
 Assert to reset the external PLL for all four interfaces.

 6–4
 Reserved.

 3–0
 RW
 [no name]
 Set to select the local reference crystal as the source forms.

Set to select the local reference crystal as the source for each respective interface on the external PLL;

otherwise, use the recovered clock as the source.

Bit 3 = Port 3 Bit 2 = Port 2 Bit 1 = Port 1 Bit 0 = Port 0

0x6C Sync Trigger Control and Status

Access / Notes: 8-bit read-write / STRATIX5_SYNC_REG

 Bit
 Access
 Name
 Description

 7-5
 Reserved.

 4
 R only
 STRATIX5_SYNC_ IN
 Status of external synchronization trigger.

 3-1
 Reserved.

 0
 RW
 STRATIX5_SYNC_ OUT
 Set to send the synchronization trigger.

0x6D SPI Data

Access / Notes: 8-bit read-write / SPI_DATA

Bit Access Name Description

7–0 RW [no name] If read, bits read from the input FIFO.

If written, bits write to the output FIFO.

0x6E SPI Status and Control

		Access / Notes:	8-bit read-write / SPI_STAT_CTRL
Bit	Access	Name	Description
7	R only	CHIP_ENABLE	Detects which main board is connected to the S5 master header. A value of 1 indicates the master header; otherwise reads 0.
6	R only	IRIGB_PULSE_IN	If set, indicates that the 1 pps signal has been detected from the incoming IRIG signal, and has been processed by and passed through the microcontroller.
5	R only	MODEM_PULSE_IN	If set, indicates that the 1 pps signal has been detected from the satellite modem and passed directly through, without any processing by the microcontroller.
4	_	[no name]	Reserved; reads as 0.
3	R only	FIFO_OUT_EMPTY	If set, indicates the output FIFO is empty.
2	R only	FIFO_OUT_FULL	If set, indicates the output FIFO is full.
1	R only	FIFO_IN_EMPTY	If set, indicates the input FIFO is empty.
0	RW	If written: RESET If read: FIFO_IN_OV	On write: toggle this bit to reset the SPI data path. On read: when set, indicates the input FIFO has overflowed. Data may be lost.

0x6F SPI Strobe

Access / Notes: 8-bit write-only / SPI_STROBE

Bit Access Name Description

7-0 W only [no name] Write (any value) to this register to advance the input FIFO.

0x7C-7D FPGA Configuration File Design ID

Access / Notes: 16-bit read-only / PCD_DESIGN_ID

Bit Access Name Description

15–0 R only [no name] A 16-bit number assigned by the organization that produced the FPGA configuration file loaded in the

main board UI FPGA.

The design ID for pe8s5_40g.bit is 0x1C00. The design ID for pe8s5_4p.bit is 0x1C04.

0x7E FPGA Configuration File Version String

Access / Notes: 8-bit read-write / MAIN_BITFILE_VERSION

To read the FPGA configuration file version string from ROM, write the ROM address to the register and read the ASCII data from the same register. The version string is a maximum of 64 bytes long, so only

the first six bits of the address are significant.

Bit Access Name Description

7–0 RW ID_ADD_DATA Write an address to read ROM contents. Result is...

mainBoard_mezzBoard_bitfileName version.revision mm/dd/yyyy (number of DMA

channels used, number of DMA channels required by PCI FPGA)

mm/dd/yyyy is the date the FPGA configuration file was created. Replace italicized terms with actual

values — for example, $sv16_pe8s5_4p$ 0.0 04/24/2013 (10,10).

0x7F Board ID [Reserved]

Registers, UI

0x000000-0x7FFFFF BAR1 Memory-Mapped

0x000010 Data Path and Memory Control

oxedetic Bata i alli alla memery control			
		Access / Notes:	32-bit read-write / STRATIX5_MEMPATH_CTRL
Bit	Access	Name	Description
31–25	_	_	Reserved.
24	RW	STRATIX5_MEM_ LOOP_MODE	Assert to enable loop mode to allow for looping in DDR3 memory. Use in conjunction with register 0x000024 Memory Loop Size.
23-20	RW	[no name]	Select port (data source for memory).
19–17	_	_	Reserved.
16	RW	STRATIX5_SEL_ DMA	Assert to direct data to DMA.
15	RW	STRATIX5_MEM_ SYNC_DIMM	Assert to synchronize the DDR3 memory banks, effectively creating a single, wider bank of memory.
14	RW	STRATIX5_MEM_ WR_FIRST	Assert to set write priority for memory.
13	RW	STRATIX5_MEM_ M1_ACTIVE	Memory port 1 active.
12	RW	STRATIX5_M0_ BYPASS	Memory port 0 bypass mode.
11	R only	[no name]	Bank D PHY initialization completed successfully.
10	R only	[no name]	Bank C PHY initialization completed successfully.
9	R only	[no name]	Bank B PHY initialization completed successfully.
8	R only	[no name]	Bank A PHY initialization completed successfully.
7	RW	[no name]	Bank D logical reset.
6	RW	[no name]	Bank C logical reset.
5	RW	[no name]	Bank B logical reset.
4	RW	[no name]	Bank A logical reset.
3	RW	[no name]	Bank D PHY reset.
2	RW	[no name]	Bank C PHY reset.
1	RW	[no name]	Bank B PHY reset.
0	RW	[no name]	Bank A PHY reset.

0x000014 Memory Status

		Access / Notes:	32-bit read-only / STRATIX5_DFIFO_STATUS
Bit	Access	Name	Description
31–28	R only	[no name]	Bank D debug information.
27–24	R only	[no name]	Bank C debug information.
23–20	R only	[no name]	Bank B debug information.
19–16	R only	[no name]	Bank A debug information.
15	R only	[no name]	Bank D 100% full.

14	R only	[no name]	Bank D 75% full.
13	R only	[no name]	Bank D 50% full.
12	R only	[no name]	Bank D 25% full.
11	R only	[no name]	Bank C 100% full.
10	R only	[no name]	Bank C 75% full.
9	R only	[no name]	Bank C 50% full.
8	R only	[no name]	Bank C 25% full.
7	R only	[no name]	Bank B 100% full.
6	R only	[no name]	Bank B 75% full.
5	R only	[no name]	Bank B 50% full.
4	R only	[no name]	Bank B 25% full.
3	R only	[no name]	Bank A 100% full.
2	R only	[no name]	Bank A 75% full.
1	R only	[no name]	Bank A 50% full.
0	R only	[no name]	Bank A 25% full.

0x000018 W PRBS [Reserved]

0x00001C W PRBS 2 [Reserved]

0x000024 Memory Loop Size

Access / Notes: 32-bit read-write / STRATIX5_MEMLOOP_LNGTH

BitAccessNameDescription31–0RW[no name]Memory loop size.

0x000028 Memory Information

Access / Notes: 32-bit read-only / STRATIX5_MEMINFO

Bit	Access	Name	Description
31–28	_	_	Reserved.
27–20	R only	[no name]	Avalon address width, in bits.
19–10	R only	[no name]	Data word width in bytes per bank.
9–0	R only	[no name]	Burst size in number of transfers (four data words per transfer).

Registers, Port: Ports 0-3 (SFPs)

0x80-0x9F Indirect

0x80, 88, 90, 98 SFP Configuration and Status

Access / Notes: 8-bit read-write

0x80 (Port 0): STRATIX5_REGXL8(STRATIX5_OPT_XCVR, 0) 0x88 (Port 1): STRATIX5_REGXL8(STRATIX5_OPT_XCVR, 1) 0x90 (Port 2): STRATIX5_REGXL8(STRATIX5_OPT_XCVR, 2) 0x98 (Port 3): STRATIX5_REGXL8(STRATIX5_OPT_XCVR, 3)

Bit	Access	Name	Description
7	R only	[no name]	When set, indicates a loss of signal.
6	R only	[no name]	When set, indicates an SFP/+ transmit fault.
5	R only	[no name]	When set, indicates the SFP/+ is connected and detected.
4–3	_	_	Reserved.
2	RW	[no name]	Set for SFP+ rate select (1).
1	RW	[no name]	Set for SFP+ rate select (0).
0	RW	[no name]	Set to disable transmit.

0x82, 8A, 92, 9A Port Status

Access / Notes: 8-bit read-only

0x82 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_STAT, 0) 0x8A (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_STAT, 1) 0x92 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_STAT, 2) 0x9A (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_STAT, 3)

Bit	Access	Name	Description
7	_	_	Reserved.
6	R only	[no name]	When set, indicates the transceiver reconfiguration is in progress.
5	_	_	Reserved.
4	R only	[no name]	When set, indicates the transceiver transmit PLL0 is locked.
3	R only	[no name]	When set, indicates the transceiver CDR is locked to data.
2	R only	[no name]	When set, indicates the transceiver CDR is locked to reference clock.
1	R only	[no name]	When set, indicates the transceiver is ready to receive.
0	R only	[no name]	When set, indicates the transceiver is ready to transmit.

0x87, 8F, 97, 9F Port Information

Access / Notes: 8-bit read-only

0x87 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_INFO, 0) 0x8F (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_INFO, 1) 0x97 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_INFO, 2) 0x9F (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_INFO, 3)

Bit Access Name Descrip	tion
-------------------------	------

7–4 R only [no name] Port type (SFP+ = 0; QSFP = 1).

3–0 R only [no name] Port number.

Registers, Port: Ports 0-3 (SFPs)

0x800000-0x837FFF BAR1 Memory-Mapped

0x800000, 810000, 820000, 830000 Receive Framer Status and Control

Access / Notes:	32-bit read-write
	0x800000 (Port 0): STRATIX5_REGXL8(STRATIX5_RX_FRM, 0)
	0x810000 (Port 1): STRATIX5_REGXL8(STRATIX5_RX_FRM, 1)
	0x820000 (Port 2): STRATIX5_REGXL8(STRATIX5_RX_FRM, 2)

0x820000 (Port 2): STRATIX5_REGXL8(STRATIX5_RX_FRM, 2) 0x830000 (Port 3): STRATIX5_REGXL8(STRATIX5_RX_FRM, 3)

			0x030000 (F0It 3). 31KA1IX3_KEGXE0(31KA1IX3_KX_1 KW, 3)
Bit	Access	Name	Description
31	R only	[no name]	Copy of S5_RXFRM_BYTE_ALGND.
30–28	R only	[no name]	Byte offset.
27	R only	[no name]	Copy of S5_RXFRM_BIT_ALGND.
26–24	R only	[no name]	Bit offset.
23–16	_	_	Reserved.
15	R only	S5_RXFRM_FRM_ LCKD	When set, the framer has detected multiple consecutive frames and is locked.
14	R only	S5_RXFRM_FRM_ FOUND	When set, the framer has deteced the beginning of an SDH / OTN frame.
13–10	_	_	Reserved.
9	R only	S5_RXFRM_BYTE_ ALGND	When set, the framer is byte-aligned to the SDH / OTN frame alignment signal (FAS) pattern.
8	R only	S5_RXFRM_BIT_ ALGND	When set, the framer is bit-aligned to the SDH / OTN frame alignment signal (FAS) pattern.
7–5	_	_	Reserved.
4	RW	S5_RXFRM_DIS_ DSCRM	Set to disable the descrambler (i.e., acquire framed, scrambled data). Used only in conjunction with bit 1 (S5_RXFRM_EN).
3	RW	S5_RXFRM_CHK_ PAYLD	Set to enable hardware checking of PRBS payload data.
2	RW	S5_RXFRM_CAT_ PAYLD	Set to capture only payload data (i.e., strip framing).
1	RW	S5_RXFRM_EN	Set to allow data acquisition only when the framer is locked to the incoming signal. Acquired data is descrambled.
0	RW	S5_RXFRM_RST	Reset framer. Set, then clear to force the framer to drop, then relock onto the framing pattern.

0x800004, 810004, 820004, 830004 Receive Filter

Access / Notes: 32-bit read-write

0x800004 (Port 0): STRATIX5_REGXL8(STRATIX5_RX_FILTER, 0) 0x810004 (Port 1): STRATIX5_REGXL8(STRATIX5_RX_FILTER, 1) 0x820004 (Port 2): STRATIX5_REGXL8(STRATIX5_RX_FILTER, 2) 0x830004 (Port 3): STRATIX5_REGXL8(STRATIX5_RX_FILTER, 3)

Bit	Access	Name	Description
31–8	_	_	Reserved.
7	RW	S5_RXFILT_IGNR_ ALL_FILT	Set to ignore all filters (overrides all other bits in this register).

6–3	-	_	Reserved.
2	RW	S5_RXFILT_STRIP_ FEC	Set to strip FEC (OTU only).
1	RW	S5_RXFILT_ALL_ OTU_OVRHD	Set to force capture of OTU overhead (regardless of the demux mask).
0	RW	S5_RXFILT_ OVRHD_ONLY	Set to capture only frame overhead data (i.e., strip payload).

0x800008, 810008, 820008, 830008 Transmit Framer Control [Reserved]

0x80000C, 81000C, 82000C, 83000C Line Rate / Protocol Control

Access / Notes: 32-bit read-write

0x80000C (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_RATE, 0)
0x81000C (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_RATE, 1)
0x82000C (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_RATE, 2)
0x83000C (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_RATE, 3)

BitAccessNameDescription31–8--Reserved.

7–0 RW [no name] Set expected line rate / protocol:

0 = STM64 / OC192 1 = STM16 / OC48 2 = STM4 / OC12 3 = STM1 / OC3 4 = 1GbE 5 = 10GbE 6 = OTU2 7 = OTU2e 8 = OTU2F 9 = OTU1

0x800010, 810010, 820010, 830010 Synchronization Control

Access / Notes: 32-bit read-write

0x800010 (Port 0): STRATIX5_REGXL8(STRATIX5_PSYNC_CTRL, 0)
0x810010 (Port 1): STRATIX5_REGXL8(STRATIX5_PSYNC_CTRL, 1)
0x820010 (Port 2): STRATIX5_REGXL8(STRATIX5_PSYNC_CTRL, 2)
0x830010 (Port 3): STRATIX5_REGXL8(STRATIX5_PSYNC_CTRL, 3)

Bit	Access	Name	Description
31–16	_	_	Reserved.
15	RW	STRATIX5_ TXTRIG_ARM	Set to arm transmit trigger.
14	_	_	Reserved.
13–12	RW	[no name]	Select when DDR3 FIFO transmit will start: 0 = ignore 1 = when FIFO is 50% full 2 = when FIFO is 75% full 3 = when FIFO is 100% full The transmit logic waits to transmit until the selected threshold is reached.
11–10	_	_	Reserved.

9–8	RW	[no name]	Select transmit trigger source: 0 = external 1 = internal
7	RW	STRATIX5_ RXTRIG_ARM	Set to arm receive trigger.
6–3	_	_	Reserved.
2	RW	[no name]	Set to disable wait for frame receive trigger mode.
1–0	RW	[no name]	Select receive trigger source: 0 = external 1 = internal

0x800014, 810014, 820014, 830014 Frame Statistics Count Control

Access / Notes: 32-bit read-write

0x800014 (Port 0): STRATIX5_REGXL8(STRATIX5_FRM_CNT_CTRL, 0) 0x810014 (Port 1): STRATIX5_REGXL8(STRATIX5_FRM_CNT_CTRL, 1) 0x820014 (Port 2): STRATIX5_REGXL8(STRATIX5_FRM_CNT_CTRL, 2) 0x830014 (Port 3): STRATIX5_REGXL8(STRATIX5_FRM_CNT_CTRL, 3)

31–8	_	_	Reserved.
7	RW	[no name]	Set to enable the frame statistics counters; clear to reset the counters.
6–1	_	_	Reserved.
0	RW	[no name]	Set to capture frame statistics counter data (B1, B2, M1, LOF); clear to update counters continuously.

0x800018, 810018, 820018, 830018 Transmit National Byte

Description

Access / Notes: 32-bit read-write

0x800018 (Port 0): STRATIX5_REGXL8(STRATIX5_TX_NATIONAL, 0) 0x810018 (Port 1): STRATIX5_REGXL8(STRATIX5_TX_NATIONAL, 1) 0x820018 (Port 2): STRATIX5_REGXL8(STRATIX5_TX_NATIONAL, 2) 0x830018 (Port 3): STRATIX5_REGXL8(STRATIX5_TX_NATIONAL, 3)

BitAccessNameDescription31–8––Reserved.

Bit

Access Name

7–0 RW [no name] The National byte for locally generated SONET / SDH transmit frames.

0x80001C, 81001C, 82001C, 83001C Transmit Test Pattern

Access / Notes: 32-bit read-write

0x80001C (Port 0): STRATIX5_REGXL8(STRATIX5_TX_TEST_PAT, 0)
0x81001C (Port 1): STRATIX5_REGXL8(STRATIX5_TX_TEST_PAT, 1)
0x82001C (Port 2): STRATIX5_REGXL8(STRATIX5_TX_TEST_PAT, 2)
0x83001C (Port 3): STRATIX5_REGXL8(STRATIX5_TX_TEST_PAT, 3)

BitAccessNameDescription31–16–Reserved.

15–0 RW [no name] Set the transmit test pattern.

0x800020, 810020, 820020, 830020 Last B1 Error

Access / Notes: 32-bit read-only

0x800020 (Port 0): STRATIX5_REGXL8(STRATIX5_LAST_B1_ERR, 0) 0x810020 (Port 1): STRATIX5_REGXL8(STRATIX5_LAST_B1_ERR, 1) 0x820020 (Port 2): STRATIX5_REGXL8(STRATIX5_LAST_B1_ERR, 2) 0x830020 (Port 3): STRATIX5_REGXL8(STRATIX5_LAST_B1_ERR, 3)

BitAccessNameDescription31–8––Reserved.

7-0

R only [no name] The value of the error mask for the last B1 error. A B1 error mask is one byte resulting from a logical operation on the previous frame. Errors occurring regularly in the same bit of the byte can indicate a

operation on the previous frame. Errors occurring regularly in the same bit of the byte can indicate a problem in the sender's or receiver's equipment. If errors are occurring on the fiber, the B1bits in error

are more likely to be randomly located in the byte.

0x800024, 810024, 820024, 830024 B1 Error Count

Access / Notes: 32-bit read-only

0x800024 (Port 0): STRATIX5_REGXL8(STRATIX5_B1_ERR_CNT, 0)
0x810024 (Port 1): STRATIX5_REGXL8(STRATIX5_B1_ERR_CNT, 1)
0x820024 (Port 2): STRATIX5_REGXL8(STRATIX5_B1_ERR_CNT, 2)
0x830024 (Port 3): STRATIX5_REGXL8(STRATIX5_B1_ERR_CNT, 3)

Bit Access Name Description 31–24 – Reserved.

23–0 R only [no name] The number of B1 bits found to be in error since the counter was last reset.

0x800028, 810028, 820028, 830028 B2 Error Count

Access / Notes: 32-bit read-only

0x800028 (Port 0): STRATIX5_REGXL8(STRATIX5_B2_ERR_CNT, 0)
0x810028 (Port 1): STRATIX5_REGXL8(STRATIX5_B2_ERR_CNT, 1)
0x820028 (Port 2): STRATIX5_REGXL8(STRATIX5_B2_ERR_CNT, 2)
0x830028 (Port 3): STRATIX5_REGXL8(STRATIX5_B2_ERR_CNT, 3)

Bit Access Name Description

31–0 R only [no name] The number of B2 bits found to be in error since the counter was last reset.

0x80002C, 81002C, 82002C, 83002C M1 Error Count

Access / Notes: 32-bit read-only

0x80002C (Port 0): STRATIX5_REGXL8(STRATIX5_M1_ERR_CNT, 0) 0x81002C (Port 1): STRATIX5_REGXL8(STRATIX5_M1_ERR_CNT, 1) 0x82002C (Port 2): STRATIX5_REGXL8(STRATIX5_M1_ERR_CNT, 2) 0x83002C (Port 3): STRATIX5_REGXL8(STRATIX5_M1_ERR_CNT, 3)

BitAccessNameDescription31–24–Reserved.

23-0 R only [no name] The number of M1 bits found to be in error since the counter was last reset. The M1 byte is sent from

the remote receiver of the signal, if that remote receiver has detected a B1 error. In that case, the B1

error mask is copied and sent back as the M1 byte.

0x800030, 810088, 820088, 830088 Loss of Frame Count

Access / Notes: 32-bit read-only

0x800030 (Port 0): STRATIX5_REGXL8(STRATIX5_LOF_CNT, 0) 0x810088 (Port 1): STRATIX5_REGXL8(STRATIX5_LOF_CNT, 1) 0x820088 (Port 2): STRATIX5_REGXL8(STRATIX5_LOF_CNT, 2) 0x830088 (Port 3): STRATIX5_REGXL8(STRATIX5_LOF_CNT, 3)

Bit Access Name Description

31–0 R only [no name] The number of times framing was lost since the counter was last reset. This number equals the number

of times bit 15 (S5_RXFRM_FRM_LCKD) in register 0x800000, 810000, 820000, 830000 Receive Framer Status and Control has gone clear. Framing is lost when four consecutive bad framing patterns

are detected.

0x800034, 810034, 820034, 830034 Pattern Error Count

Access / Notes: 32-bit read-only

0x800034 (Port 0): STRATIX5_REGXL8(STRATIX5_PAT_ERR_CNT, 0) 0x810034 (Port 1): STRATIX5_REGXL8(STRATIX5_PAT_ERR_CNT, 1) 0x820034 (Port 2): STRATIX5_REGXL8(STRATIX5_PAT_ERR_CNT, 2) 0x830034 (Port 3): STRATIX5_REGXL8(STRATIX5_PAT_ERR_CNT, 3)

Bit Access Name Description

31–0 R only [no name] The number of times that the framing pattern was not correct, after data has been in frame. Because

framing is not lost until the framing pattern has been incorrect four consecutive times, an incorrect

framing pattern does not necessarily mean that framing was lost.

0x80003C, 81003C, 82003C, 83003C Demux Bitmask

Access / Notes: 32-bit read-only

Addresses and writes a 192-bit mask which can be used to select timeslots from an SDH / SONET

frame. Writing a 1 to a bit will disable that bit's timeslot.

0x80003C (Port 0): STRATIX5 REGXL8(STRATIX5 DEMUX BITMASK, 0) 0x81003C (Port 1): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK, 1) 0x82003C (Port 2): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK, 2) 0x83003C (Port 3): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK, 3)

Bit	Access	Name	Description
31	RW	[no name]	Set to write data in bits 7–0 to address in bits 12–8.
30–13	_	_	Reserved.
12–8	RW	[no name]	Address for a 4-bit or 8-bit section of the mask.
7–0	RW	[no name]	Data to be written to the mask. For OC3 / STM1, OC12 / STM4, and OC48 / STM16, only four bits are

STM1

The mask is written 4 bits at a time; only the first 3 bits [0-2] of the mask are used.

Example: To select AU-3(1), the first AU-3, use the pdb command...

: wm132 80003C 80000003

STM4

The mask is written 4 bits at a time; only the first 12 bits [0-11] of the mask are used.

Example: To select AU-4(1,0), the first STM1, use the pdb commands...

- : wm132 80003C 80000007 : wm132 80003C 80000107
- : wm132 80003C 80000207
- ...or to select AU-3(1,1), the first AU-3, use the commands...
- : wm132 80003C 80000007 : wm132 80003C 8000010F : wm132 80003C 8000020F

STM16

addressed per write; for OC192 / STM64, eight bits are addressed per write.

The mask is written 4 bits at a time; only the first 48 bits [0-47] of the mask are used.

Example: To select AU-4(1,1,0), the first STM1, use the pdb commands...

: wm132 80003C 80000007 : wm132 80003C 8000010F : wm132 80003C 8000020F : wm132 80003C 8000030F : wm132 80003C 80000407 : wm132 80003C 8000050F : wm132 80003C 8000060F : wm132 80003C 8000070F : wm132 80003C 80000807 : wm132 80003C 8000090F : wm132 80003C 80000A0F

: wm132 80003C 80000B0F

STM64

Example: To select AU-4(1,1,1,0), the first STM1, use the pdb commands...

: wm132 80003C 8000007F : wm132 80003C 800001FF : wm132 80003C 800002FF : wm132 80003C 800003FF : wm132 80003C 800004FF : wm132 80003C 800005FF : wm132 80003C 800006FF : wm132 80003C 800007FF : wm132 80003C 8000087F : wm132 80003C 800009FF : wm132 80003C 80000AFF : wm132 80003C 80000FFF : wm132 80003C 8000107F : wm132 80003C 800011FF

: wm132 80003C 800017FF

The mask is written 8 bits at a time; all 192 bits are used.

: wm132 80003C 80000BFF : wm132 80003C 80000CFF : wm132 80003C 80000DFF : wm132 80003C 80000EFF : wm132 80003C 800012FF : wm132 80003C 800013FF : wm132 80003C 800014FF : wm132 80003C 800015FF : wm132 80003C 800016FF

0x800040, 810040, 820040, 830040 Demux Bitmask Readback

Access / Notes: 32-bit read-only

0x800040 (Port 0): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK_RDBCK, 0) 0x810040 (Port 1): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK_RDBCK, 1) 0x820040 (Port 2): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK_RDBCK, 2) 0x830040 (Port 3): STRATIX5_REGXL8(STRATIX5_DEMUX_BITMASK_RDBCK, 3)

BitAccessNameDescription31–8––Reserved.

7–0 R only [no name] Data from the section of the mask addressed in STRATIX5_DEMUX_BITMASK. For OC3 / STM1,

OC12 / STM4, and OC48 / STM16, only bits 3–0 are valid.

0x800060, 810060, 820060, 830060 Detailed Port Status

Access / Notes: 32-bit read-only

0x800060 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_STAT2, 0) 0x810060 (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_STAT2, 1) 0x820060 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_STAT2, 2) 0x830060 (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_STAT2, 3)

 Bit
 Access
 Name
 Description

 31–2
 Reserved.

 1
 R only
 [no name]
 Lane 0 transceiver clock and data recovery (CDR) is locked to data.

0 R only [no name] Lane 0 transceiver clock and data recovery (CDR) is locked to reference clock.

0x800064, 810064, 820064, 830064 Transceiver Reconfiguration Address and Control

Access / Notes: 32-bit read-write

0x800064 (Port 0): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_ADDR, 0) 0x810064 (Port 1): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_ADDR, 1) 0x820064 (Port 2): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_ADDR, 2) 0x830064 (Port 3): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_ADDR, 3)

Bit	Access	Name	Description
31–19	_	_	Reserved.
18	RW	[no name]	$\label{lem:configuration} \textbf{Caution: This bit affects all ports. Set to reset the entire FPGA transceiver reconfiguration interface.}$
17	R only	[no name]	Set when the transceiver reconfiguration interface is busy.
16	RW	[no name]	Set to reset the port's transceiver.
15–0	RW	[no name]	Reconfiguration register address.

0x800068, 810068, 820068, 830068 Transceiver Reconfiguration Write Data

Access / Notes: 32-bit read-write

0x800068 (Port 0): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_WDATA, 0) 0x810068 (Port 1): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_WDATA, 1) 0x820068 (Port 2): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_WDATA, 2) 0x830068 (Port 3): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_WDATA, 3)

Bit Access Name Description

31–0 RW [no name] Reconfiguration interface write data.

0x80006C, 81006C, 82006C, 83006C Transceiver Reconfiguration Read Data

Access / Notes: 32-bit read-only

0x80006C (Port 0): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_RDATA, 0) 0x81006C (Port 1): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_RDATA, 1) 0x82006C (Port 2): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_RDATA, 2) 0x83006C (Port 3): STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_RDATA, 3)

Bit Access Name Description

31–0 R only [no name] Reconfiguration interface read data.

0x800074, 810074, 820074, 830074 Frequency Counter Enable

Access / Notes: 32-bit read-write

0x800074 (Port 0): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_EN, 0) 0x810074 (Port 1): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_EN, 1) 0x820074 (Port 2): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_EN, 2) 0x830074 (Port 3): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_EN, 3)

Bit Access Name Description 31–1 – Reserved.

0 RW [no name] Set to enable frequency counter.

0x800078, 810078, 820078, 830078 Receive Frequency Counter

Access / Notes: 32-bit read-only

0x800078 (Port 0): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_RX, 0)
0x810078 (Port 1): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_RX, 1)
0x820078 (Port 2): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_RX, 2)
0x830078 (Port 3): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_RX, 3)

Bit Access Name Description 31–24 – Reserved.

23-0 R only [no name] Receive frequency counter value.

0x80007C, 81007C, 82007C, 83007C Transmit Frequency Counter

Access / Notes: 32-bit read-only

0x80007C (Port 0): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_TX, 0) 0x81007C (Port 1): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_TX, 1) 0x82007C (Port 2): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_TX, 2) 0x83007C (Port 3): STRATIX5_REGXL8(STRATIX5_FREQ_CNT_TX, 3)

Bit Access Name Description 31–24 – Reserved.

23–0 R only [no name] Transmit frequency counter value.

0x800080, 810080, 820080, 830080 PRBS Mode

Access / Notes: 32-bit read-only

0x800080 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_MODE, 0) 0x810080 (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_MODE, 1) 0x820080 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_MODE, 2) 0x830080 (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_MODE, 3)

BitAccessNameDescription31–8––Reserved.7–0RW[no name]PRBS mode.

0x800084, 810084, 820084, 830084 PRBS Control 0

Access / Notes: 32-bit read-write

0x800084 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL0, 0)
0x810084 (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL0, 1)
0x820084 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL0, 2)
0x830084 (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL0, 3)

Bit	Access	Name	Description
31	-	_	Reserved.
30	R only	[no name]	Lane 1 transmit PRBS realtime error.
29	R only	[no name]	Lane 1 transmit PRBS latched error.
28	R only	[no name]	Lane 1 transmit PRBS synchronized.
27–26	-	_	Reserved.
25	RW	[no name]	Lane 1 transmit PRBS check enable.
24	RW	[no name]	Lane 1 transmit PRBS generate enable.
23	-	_	Reserved.
22	R only	[no name]	Lane 1 receive PRBS realtime error.
21	R only	[no name]	Lane 1 receive PRBS latched error.
20	R only	[no name]	Lane 1 receive PRBS synchronized.
19–18	_	_	Reserved.
17	RW	[no name]	Lane 1 receive PRBS check enable.
16	RW	[no name]	Lane 1 receive PRBS generate enable.
15	_	_	Reserved.
14	R only	[no name]	Lane 0 transmit PRBS realtime error.

13	R only	[no name]	Lane 0 transmit PRBS latched error.
12	R only	[no name]	Lane 0 transmit PRBS synchronized.
11–10	_	_	Reserved.
9	RW	[no name]	Lane 0 transmit PRBS check enable.
8	RW	[no name]	Lane 0 transmit PRBS generate enable.
7	_	_	Reserved.
6	R only	[no name]	Lane 0 receive PRBS realtime error.
5	R only	[no name]	Lane 0 receive PRBS latched error.
4	R only	[no name]	Lane 0 receive PRBS synchronized.
3–2	_	_	Reserved.
1	RW	[no name]	Lane 0 receive PRBS check enable.
0	RW	[no name]	Lane 0 receive PRBS generate enable.

0x800088, 810088, 820088, 830088 PRBS Control 1

Access / Notes: 32-bit read-write

0x800088 (Port 0): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 0) 0x810088 (Port 1): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 1) 0x820088 (Port 2): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 2) 0x830088 (Port 3): STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 3)

			0.1000000 (1 0.1 0): 0 11 ti 11 ti 10_11 = 0.1=0.1
Bit	Access	Name	Description
31	_	_	Reserved.
30	R only	[no name]	Lane 3 transmit PRBS realtime error.
29	R only	[no name]	Lane 3 transmit PRBS latched error.
28	R only	[no name]	Lane 3 transmit PRBS synchronized.
27–26	_	_	Reserved.
25	RW	[no name]	Lane 3 transmit PRBS check enable.
24	RW	[no name]	Lane 3 transmit PRBS generate enable.
23	_	_	Reserved.
22	R only	[no name]	Lane 3 receive PRBS realtime error.
21	R only	[no name]	Lane 3 receive PRBS latched error.
20	R only	[no name]	Lane 3 receive PRBS synchronized.
19–18	_	_	Reserved.
17	RW	[no name]	Lane 3 receive PRBS check enable.
16	RW	[no name]	Lane 3 receive PRBS generate enable.
15	_	_	Reserved.
14	R only	[no name]	Lane 2 transmit PRBS realtime error.
13	R only	[no name]	Lane 2 transmit PRBS latched error.
12	R only	[no name]	Lane 2 transmit PRBS synchronized
11–10	_	_	Reserved.
9	RW	[no name]	Lane 2 transmit PRBS check enable.
8	RW	[no name]	Lane 2 transmit PRBS generate enable.
7	_	_	Reserved.
6	R only	[no name]	Lane 2 receive PRBS realtime error.
5	R only	[no name]	Lane 2 receive PRBS latched error.

4	R only	[no name]	Lane 2 receive PRBS synchronized.
3–2	_	_	Reserved.
1	RW	[no name]	Lane 2 receive PRBS check enable.
0	RW	[no name]	Lane 2 receive PRBS generate enable.

0x80008C, 81008C, 82008C, 83008C PRBS Control 2 [Reserved]

0x800090, 810090, 820090, 830090 PRBS Control 3 [Reserved]

0x800094, 810094, 820094, 830094 PRBS Control 4 [Reserved]

Registers, Port: Port 4 (QSFP)

0xA0-0xA7 Indirect

0xA0 QSFP Configuration and Status

		Access / Notes:	$8 \hbox{-bit read-write / STRATIX5_REGXL8} (STRATIX5_OPT_XCVR, 4) \\$
Bit	Access	Bit name	Description
7	_	_	Reserved.
6	R only	[no name]	When set, indicates that the QSFP is asserting an interrupt.
5	R only	[no name]	When set, indicates that the QSFP is connected and detected.
4	_	_	Reserved.
3	_	_	Reserved.
2	RW	[no name]	Set to enable low power mode.
1	RW	[no name]	Set to enable transceiver.
0	_	_	Reserved.

0xA1 Port Enable

		Access / Notes:	8-bit read-write / STRATIX5_REGXL8(STRATIX5_PORT_CTRL, 4)
Bit	Access	Name	Description
7–3	_	_	Reserved.
2	RW	[no name]	Set to enable PLL1 (not used).
1	RW	[no name]	Set to enable PLL0 (not used).
0	RW	[no name]	Set to enable the LIU (not used).

0xA2 Port Status

		Access / Notes:	8-bit read-only / STRATIX5_REGXL8(STRATIX5_PORT_STAT, 4)
Bit	Access	Name	Description
7	_	_	Reserved.
6	R only	[no name]	When set, indicates the transceiver reconfiguration is in progress.
5	_	_	Reserved.
4	R only	[no name]	When set, indicates the transceiver transmit PLL0 is locked.
3	R only	[no name]	When set, indicates the transceiver CDR is locked to data.
2	R only	[no name]	When set, indicates the transceiver CDR is locked to reference clock.
1	R only	[no name]	When set, indicates the transceiver is ready to receive.
0	R only	[no name]	When set, indicates the transceiver is ready to transmit.

0xA3 QSFP Status 2 [Reserved]

0xA7 Port Information

Access / Notes: 8-bit read-only / STRATIX5_REGXL8(STRATIX5_PORT_INFO, 4)

BitAccessNameDescription7-4R only[no name]Port type (QSFP=1).3-0R only[no name]Port number.

Registers, Port: Port 4 (QSFP/+)

0x840010-0x840098 BAR1 Memory-Mapped

0x840010 Synchronization Control

		Access / Notes:	32-bit read-write / STRATIX5_REGXL8(STRATIX5_PSYNC_CTRL, 4)
Bit	Access	Name	Description
31–16	_	_	Reserved.
15	RW	STRATIX5_ TXTRIG_ARM	Set to arm transmit trigger.
14	_	_	Reserved.
13–12	RW	[no name]	Select when DDR3 FIFO transmit will start: 0 = ignore 1 = when FIFO is 50% full 2 = when FIFO is 75% full 3 = when FIFO is 100% full The transmit logic waits to transmit until the selected threshold is reached.
11–10	_	_	Reserved.
9–8	RW	[no name]	Select transmit trigger source: 0 = external 1 = internal
7	RW	STRATIX5_ RXTRIG_ARM	Set to arm receive trigger.
6–3	_	_	Reserved.
2	RW	[no name]	Set to disable wait for frame receive trigger mode.
1–0	RW	[no name]	Select receive trigger source: 0 = external 1 = internal

0x840014 Frame Count Control [Reserved]

0x840060 Detailed Port Status

		Access / Notes:	32-bit read-only / STRATIX5_REGXL8(STRATIX5_PORT_STAT2, 4)
Bit	Access	Name	Description
31–8	_	_	Reserved.
7	R only	[no name]	Lane 3 transceiver clock and data recovery (CDR) is locked to data.
6	R only	[no name]	Lane 3 transceiver clock and data recovery (CDR) is locked to reference clock.
5	R only	[no name]	Lane 2 transceiver clock and data recovery (CDR) is locked to data.
4	R only	[no name]	Lane 2 transceiver clock and data recovery (CDR) is locked to reference clock.

3	R only	[no name]	Lane 1 transceiver clock and data recovery (CDR) is locked to data.
2	R only	[no name]	Lane 1 transceiver clock and data recovery (CDR) is locked to reference clock.
1	R only	[no name]	Lane 0 transceiver clock and data recovery (CDR) is locked to data.
0	R only	[no name]	Lane 0 transceiver clock and data recovery (CDR) is locked to reference clock.

0x840064 Transceiver Reconfiguration Address and Control

Access / Notes: 3	32-bit read-write / STRATIX5	REGXL8(STRATIX5	XCVR MGMT	ADDR, 4)
-------------------	------------------------------	-----------------	-----------	----------

Bit	Access	Name	Description
31–19	_	_	Reserved.
18	RW	[no name]	Caution: This bit affects all ports. Set to reset the entire FPGA transceiver reconfiguration interface.
17	R only	[no name]	Set when the transceiver reconfiguration interface is busy.
16	RW	[no name]	Set to reset the port's transceiver.
15–0	RW	[no name]	Reconfiguration register address.

0x840068 Transceiver Reconfiguration Address and Control

Access / Notes: 32-bit read-write / STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_WDATA, 4)

Bit Access Name Description

31–0 RW [no name] Reconfigure interface write data.

0x84006C Transceiver Reconfiguration Address and Control

Access / Notes: 32-bit read-only / STRATIX5_REGXL8(STRATIX5_XCVR_MGMT_RDATA, 4)

Bit Access Name Description

31–0 R only [no name] Reconfigure interface read data.

0x840074 Frequency Counter Enable

Access / Notes: 32-bit read-write / STRATIX5_REGXL8(STRATIX5_FREQ_CNT_EN, 4)

Bit Access Name Description 31–1 – Reserved.

0 RW [no name] Set to enable to frequency counter.

0x840078 Receive Frequency Counter

Access / Notes: 32-bit read-only / STRATIX5_REGXL8(STRATIX5_FREQ_CNT_RX, 4)

BitAccessNameDescription31–24–Reserved.

23-0 R only [no name] Receive frequency counter value.

0x84007C Transmit Frequency Counter

Access / Notes: 32-bit read-only / STRATIX5_REGXL8(STRATIX5_FREQ_CNT_TX, 4)

BitAccessNameDescription31–24--Reserved.

23–0 R only [no name] Transmit frequency counter value.

0x840080 PRBS Mode

Access / Notes: 32-bit read-write / STRATIX5_REGXL8(STRATIX5_PORT_PRBS_MODE, 4)

BitAccessNameDescription31–8––Reserved.7–0RW[no name]PRBS mode.

0x840084 PRBS Control 0

Access / Notes: 32-bit read-write / STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL0, 4)

		Access / Notes.	oz birteda wiite / GTTVTTNO_TLEGNES(GTTVTTNO_T GRT_T REG_GTTLES, 4)
Bit	Access	Name	Description
31	_	_	Reserved.
30	R only	[no name]	Lane 1 transmit PRBS realtime error.
29	R only	[no name]	Lane 1 transmit PRBS latched error.
28	R only	[no name]	Lane 1 transmit PRBS synchronized.
27–26	_	_	Reserved.
25	RW	[no name]	Lane 1 transmit PRBS check enable.
24	RW	[no name]	Lane 1 transmit PRBS generate enable.
23	_	_	Reserved.
22	R only	[no name]	Lane 1 receive PRBS realtime error.
21	R only	[no name]	Lane 1 receive PRBS latched error.
20	R only	[no name]	Lane 1 receive PRBS synchronized.
19–18	_	_	Reserved.
17	RW	[no name]	Lane 1 receive PRBS check enable.
16	RW	[no name]	Lane 1 receive PRBS generate enable.
15	_	_	Reserved.
14	R only	[no name]	Lane 0 transmit PRBS realtime error.
13	R only	[no name]	Lane 0 transmit PRBS latched error.
12	R only	[no name]	Lane 0 transmit PRBS synchronized.
11–10	_	_	Reserved.
9	RW	[no name]	Lane 0 transmit PRBS check enable.
8	RW	[no name]	Lane 0 transmit PRBS generate enable.
7	_	_	Reserved.
6	R only	[no name]	Lane 0 receive PRBS realtime error.
5	R only	[no name]	Lane 0 receive PRBS latched error.

4	R only	[no name]	Lane 0 receive PRBS synchronized.
3–2	_	_	Reserved.
1	RW	[no name]	Lane 0 receive PRBS check enable.
0	RW	[no name]	Lane 0 receive PRBS generate enable.

0x840088 PRBS Control 1

Bit Access Name Description 31 - - Reserved. 30 R only [no name] Lane 3 transmit PRBS realtime error. 29 R only [no name] Lane 3 transmit PRBS latched error. 28 R only [no name] Lane 3 transmit PRBS synchronization. 27-26 RW [no name] Lane 3 transmit PRBS check enable. 24 RW [no name] Lane 3 transmit PRBS generate enable. 24 RW [no name] Lane 3 transmit PRBS generate enable. 23 - - Reserved. 21 R only [no name] Lane 3 receive PRBS realtime error. 20 R only [no name] Lane 3 receive PRBS sheck enable. 17 RW [no name] Lane 3 receive PRBS generate enable. 15 - - Reserved. 14 R only [no name] Lane 2 transmit PRBS realtime error. 13 R only [no name] Lane 2 transmit PRBS synchronization. 11-10 RW <th></th> <th></th> <th>Access / Notes:</th> <th>32-bit read-write / STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 4)</th>			Access / Notes:	32-bit read-write / STRATIX5_REGXL8(STRATIX5_PORT_PRBS_CTRL1, 4)
30R only[no name]Lane 3 transmit PRBS realtime error.29R only[no name]Lane 3 transmit PRBS latched error.28R only[no name]Lane 3 transmit PRBS synchronization.27-26RW[no name]Reserved.25RW[no name]Lane 3 transmit PRBS check enable.24RW[no name]Lane 3 transmit PRBS generate enable.23Reserved.21R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS synchronization.19-18RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS synchronization. <td>Bit</td> <td>Access</td> <td>Name</td> <td>Description</td>	Bit	Access	Name	Description
29R only[no name]Lane 3 transmit PRBS latched error.28R only[no name]Lane 3 transmit PRBS synchronization.27-26RW[no name]Reserved.25RW[no name]Lane 3 transmit PRBS check enable.24RW[no name]Lane 3 transmit PRBS generate enable.23Reserved.22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19-18RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	31	_	_	Reserved.
28R only[no name]Lane 3 transmit PRBS synchronization.27-26RW[no name]Reserved.25RW[no name]Lane 3 transmit PRBS check enable.24RW[no name]Lane 3 transmit PRBS generate enable.23Reserved.22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19-18RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	30	R only	[no name]	Lane 3 transmit PRBS realtime error.
27-26 RW [no name] Reserved. 25 RW [no name] Lane 3 transmit PRBS check enable. 24 RW [no name] Lane 3 transmit PRBS generate enable. 23 — — Reserved. 22 R only [no name] Lane 3 receive PRBS realtime error. 21 R only [no name] Lane 3 receive PRBS latched error. 20 R only [no name] Lane 3 receive PRBS synchronization. 19-18 RW [no name] Reserved. 17 RW [no name] Lane 3 receive PRBS check enable. 16 RW [no name] Lane 3 receive PRBS generate enable. 15 — — Reserved. 14 R only [no name] Lane 2 transmit PRBS realtime error. 13 R only [no name] Lane 2 transmit PRBS synchronization. 11-10 RW [no name] Lane 2 transmit PRBS generate enable. 8 RW [no name] Lane 2 transmit PRBS realtime error. 5 R only<	29	R only	[no name]	Lane 3 transmit PRBS latched error.
25RW[no name]Lane 3 transmit PRBS check enable.24RW[no name]Lane 3 transmit PRBS generate enable.23Reserved.22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19-18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS realtime error.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	28	R only	[no name]	Lane 3 transmit PRBS synchronization.
24RW[no name]Lane 3 transmit PRBS generate enable.23Reserved.22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19-18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Reserved.8RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7-Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	27–26	RW	[no name]	Reserved.
23Reserved.22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19–18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	25	RW	[no name]	Lane 3 transmit PRBS check enable.
22R only[no name]Lane 3 receive PRBS realtime error.21R only[no name]Lane 3 receive PRBS latched error.20R only[no name]Lane 3 receive PRBS synchronization.19–18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	24	RW	[no name]	Lane 3 transmit PRBS generate enable.
21 R only [no name] Lane 3 receive PRBS latched error. 20 R only [no name] Lane 3 receive PRBS synchronization. 19–18 RW [no name] Reserved. 17 RW [no name] Lane 3 receive PRBS check enable. 16 RW [no name] Lane 3 receive PRBS generate enable. 15 Reserved. 14 R only [no name] Lane 2 transmit PRBS realtime error. 13 R only [no name] Lane 2 transmit PRBS latched error. 12 R only [no name] Lane 2 transmit PRBS synchronization. 11–10 RW [no name] Reserved. 9 RW [no name] Lane 2 transmit PRBS check enable. 8 RW [no name] Lane 2 transmit PRBS generate enable. 7 - Reserved. 6 R only [no name] Lane 2 transmit PRBS generate enable. 7 - Reserved. 6 R only [no name] Lane 2 receive PRBS realtime error. 5 R only [no name] Lane 2 receive PRBS latched error. 4 R only [no name] Lane 2 receive PRBS synchronization. 7 - Reserved. 8 R only [no name] Lane 2 receive PRBS synchronization. 8 R only [no name] Lane 2 receive PRBS synchronization. 9 Reserved. 1 R only [no name] Lane 2 receive PRBS synchronization. 1 R only [no name] Lane 2 receive PRBS synchronization. 1 R only [no name] Lane 2 receive PRBS synchronization. 1 R only [no name] Lane 2 receive PRBS check enable.	23	_	_	Reserved.
20R only[no name]Lane 3 receive PRBS synchronization.19–18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7-Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS synchronization.3-2-Reserved.1RW[no name]Lane 2 receive PRBS check enable.	22	R only	[no name]	Lane 3 receive PRBS realtime error.
19–18RW[no name]Reserved.17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3–2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	21	R only	[no name]	Lane 3 receive PRBS latched error.
17RW[no name]Lane 3 receive PRBS check enable.16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11-10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	20	R only	[no name]	Lane 3 receive PRBS synchronization.
16RW[no name]Lane 3 receive PRBS generate enable.15Reserved.14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3-2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	19–18	RW	[no name]	Reserved.
Reserved. 14 R only [no name] Lane 2 transmit PRBS realtime error. 13 R only [no name] Lane 2 transmit PRBS latched error. 14 R only [no name] Lane 2 transmit PRBS synchronization. 15 R only [no name] Reserved. 16 R only [no name] Lane 2 transmit PRBS check enable. 17 - Reserved. 18 Ronly [no name] Lane 2 transmit PRBS generate enable. 19 RW [no name] Lane 2 transmit PRBS generate enable. 10 Reserved. 11 R only [no name] Lane 2 receive PRBS realtime error. 12 Lane 2 receive PRBS synchronization. 13 Reserved. 14 R only [no name] Lane 2 receive PRBS synchronization. 15 Reserved. 16 R only [no name] Lane 2 receive PRBS synchronization. 17 Lane 2 receive PRBS check enable.	17	RW	[no name]	Lane 3 receive PRBS check enable.
14R only[no name]Lane 2 transmit PRBS realtime error.13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3–2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	16	RW	[no name]	Lane 3 receive PRBS generate enable.
13R only[no name]Lane 2 transmit PRBS latched error.12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3–2-Reserved.1RW[no name]Lane 2 receive PRBS check enable.	15	_	_	Reserved.
12R only[no name]Lane 2 transmit PRBS synchronization.11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3–2-Reserved.1RW[no name]Lane 2 receive PRBS check enable.	14	R only	[no name]	Lane 2 transmit PRBS realtime error.
11–10RW[no name]Reserved.9RW[no name]Lane 2 transmit PRBS check enable.8RW[no name]Lane 2 transmit PRBS generate enable.7Reserved.6R only[no name]Lane 2 receive PRBS realtime error.5R only[no name]Lane 2 receive PRBS latched error.4R only[no name]Lane 2 receive PRBS synchronization.3–2Reserved.1RW[no name]Lane 2 receive PRBS check enable.	13	R only	[no name]	Lane 2 transmit PRBS latched error.
9 RW [no name] Lane 2 transmit PRBS check enable. 8 RW [no name] Lane 2 transmit PRBS generate enable. 7 — Reserved. 6 R only [no name] Lane 2 receive PRBS realtime error. 5 R only [no name] Lane 2 receive PRBS latched error. 4 R only [no name] Lane 2 receive PRBS synchronization. 3-2 — Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	12	R only	[no name]	Lane 2 transmit PRBS synchronization.
8 RW [no name] Lane 2 transmit PRBS generate enable. 7 — Reserved. 6 R only [no name] Lane 2 receive PRBS realtime error. 5 R only [no name] Lane 2 receive PRBS latched error. 4 R only [no name] Lane 2 receive PRBS synchronization. 3–2 — Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	11–10	RW	[no name]	Reserved.
7 — — Reserved. 6 R only [no name] Lane 2 receive PRBS realtime error. 5 R only [no name] Lane 2 receive PRBS latched error. 4 R only [no name] Lane 2 receive PRBS synchronization. 3–2 — — Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	9	RW	[no name]	Lane 2 transmit PRBS check enable.
R only [no name] Lane 2 receive PRBS realtime error. R only [no name] Lane 2 receive PRBS latched error. R only [no name] Lane 2 receive PRBS synchronization. Lane 2 receive PRBS synchronization. Reserved. RW [no name] Lane 2 receive PRBS check enable.	8	RW	[no name]	Lane 2 transmit PRBS generate enable.
5 R only [no name] Lane 2 receive PRBS latched error. 4 R only [no name] Lane 2 receive PRBS synchronization. 3–2 – Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	7	_	_	Reserved.
4 R only [no name] Lane 2 receive PRBS synchronization. 3–2 – Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	6	R only	[no name]	Lane 2 receive PRBS realtime error.
3–2 – Reserved. 1 RW [no name] Lane 2 receive PRBS check enable.	5	R only	[no name]	Lane 2 receive PRBS latched error.
1 RW [no name] Lane 2 receive PRBS check enable.	4	R only	[no name]	Lane 2 receive PRBS synchronization.
	3–2	_	_	Reserved.
0 PW Inchamel Land 2 receive PPPS generate enable	1	RW	[no name]	Lane 2 receive PRBS check enable.
Lane 2 receive FRDS generate enable.	0	RW	[no name]	Lane 2 receive PRBS generate enable.

0x84008C PRBS Control 2 [Reserved]

0x840090 PRBS Control 3 [Reserved]

0x840094 PRBS Control 4 [Reserved]

Revision Log

Below is a history of modifications to this guide.

Date	Ву	Rev.	Pg(s)	Detail
20170104	PH,RH	0001	4	Corrected "www.edt.com/downloads/api" to "www.edt.com/api/".
20140730	PH,SB,TL	0000	All	Created this new guide.

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain:
Zerif Technologies Ltd.
Winnington House, 2 Woodberry Grove
Finchley, London N12 0DR
+44 115 855 7883, info@zerif.co.uk
www.zerif.co.uk