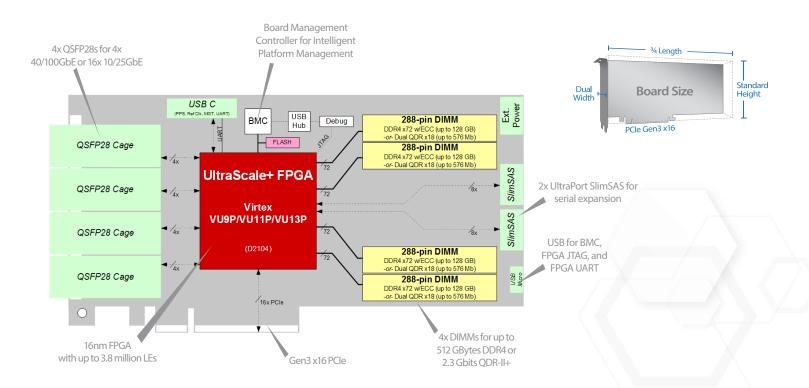


UltraScale+ PCle board with VU13P

BittWare's XUPVV4 is an UltraScale+ VU13P FPGA-based PCIe card, ideal for high-density datacenter applications. The Xilinx UltraScale+ VU13P FPGA gives designers incredible performance potential, with 3.8M logic elements —yet with a power density that makes thermal management difficult. The XUPVV4 meets this challenge with BittWare's Viper platform, supporting large FPGA loads, up to 512 GBytes DDR4, and 4x 100 Gbps Ethernet.

BittWare's Viper platform uses advanced computer flow simulation to drive the physical board design in a thermals first approach, including the use of heat pipes, airflow channels, and arranging components to maximize the limited available airflow in a server. The XUPVV4 features air cooling by default, but liquid cooling is also available. The board features the D2104 lidless package from Xilinx—allowing the heat pipes to contact the die directly, instead of through the heat spreader lid.



Xilinx VU13P FPGA: lidless package is used by BittWare's Viper thermal management for enhanced cooling performance

key features

4x 100GbE via 4 QSFP28 Air or Liquid Cooled

VU13P FPGA: **3.8 million LCs** FPGA by Xilinx

XUPVV4

PCle FPGA Board

High-Speed Networking and I/O

The XUPVV4 is enabled for high-speed networking with four front panel QSFP+ cages, each supporting 40/100GbE or four 10/25GbE channels. Serial expansion is available through two UltraPort SlimSAS connectors (16x 24Gbps) that can be connected to a second PCle interface, another XUPVV4, or other devices, including IBM's POWER9 via OpenCAPI. A utility header provides a 1GbE interface, a PPS input, and a USB interface for debug and programming support.

System Management

For system management, the XUPVV4 is equipped with a Board Management Controller (BMC), which accepts IPMI 2.0 commands. Use it along with BittWare's BittWorks II Toolkit to program the FPGA Flash over USB, monitor board power and temperature, re-program the onboard clocks, and adjust FPGA core voltage. The BMC monitors critical temperatures, voltages, and current and will shut the board down to

prevent damage. Recovery from shutdown is also supported, without the need to cycle system power.

BittWorks II Toolkit

BittWare offers complete software support for the XUPVV4 with its BittWorks II software tools. The BittWorks II Toolkit is a suite of development tools that serves as the main interface between the BittWare board and the host system. The Toolkit includes drivers, libraries, utilities, and example projects for accessing, integrating, and developing applications for the BittWare board.

FPGA Examples

BittWare provides FPGA board support IP to simplify integration and development. These example projects illustrate how to move data between the board's different interfaces and are designed to integrate easily with the Xilinx Vivado tools. All examples are available for download on BittWare's developer website.

BwMonitor

Na	me			Value	Status	
~	ଊ	Boar	d Management Controller			
		⊗	Microcontroller	Version 28591	Powered on	
~	0	SDR	Sensors			
		0	Board Power	224 Watts	OK	
		0	12v Cable Current	17.69 Amps	OK	
		0	12v Cable Voltage	11.60 Volts	OK	
		0	12v PCle Current	1.00 Amps	OK	
		0	12v PCle Voltage	11.60 Volts	OK	
		0	3.3V MP Voltage	3.3 Volts	OK	
		0	3,3V MP Current	2.36 Amps	OK	
		0	3.3V MP2 Voltage	3.3 Volts	OK	
		0	3.3V MP2 Current	0.18 Amps	OK	
		0	DIMM12 Voltage	1.19 Volts	ок	
		0	DIMM12 Current	-0.01 Amps	ОК	
		0	FPGA Core Voltage	0.84 Volts	ок	
		0	FPGA Core Current 0	149.53 Amps	ОК	
		0	FPGA Supply Die Temp	83 degrees C	ок	
		0	FPGA Supply Inductor Te	77 degrees C	ОК	
		0	FPGA Supply Inductor Te	77 degrees C	ок	
		0	FPGA Slave Supply Temp 0	85 degrees C	ОК	
		0	FPGA Slave Supply Temp 1	90 degrees C	ок	
		0	FPGA Core Temperature	53 degrees C	OK	
		0	Board Temperature	46 degrees C	ок	
		0	Vcc AUX Voltage	1.76 Volts	ОК	
		0	Vcc AUX Current	0.72 Amps	ОК	

Live board power/temperature display is included as part of Toolkit Lite

cooling

Liquid cooling

Air cooling

Board Specifications

FPGA	 Virtex UltraScale+ VU13P 48x GTY transceivers at 32.75 Gbps Up to 3.8 million logic elements Over 400 Mb of embedded memory Up to 6 integrated PCle cores
	• Up to 11,904 DSP slices with 27x18 multipliers
On-board memory	Flash memory for booting FPGA
Optional DIMM memory	 4 DIMM sites, each supporting[†]: Up to 128 GBytes DDR4 x72 with ECC Up to 576 Mbits dual QDR-II+ x18 (2 independent 288 Mbit banks)
PCIe interface	x16 Gen1, Gen2, Gen3 interface direct to FPGA (optional; no power used from PCle connector)
USB ports	USB C: connects to a breakout board for USB UART, 1 PPS input, 10MHz clock input, UART Micro USB: connects to USB-JTAG and BMC
UltraPort SlimSAS	 2 UltraPort SlimSAS on rear edge connected to FPGA via 16x GTY transceivers Can support an additional x16 or x8 PCle interface (requires soft IP core and additional slot)
QSFP cages	 4 QSFP28 (zQSFP) cages on front panel connected directly to FPGA via 16 transceivers Each supports 100GbE, 40GbE, 4x 25GbE, or 4x 10GbE and can be combined for 400GbE

Board Management Controller	 Voltage, current, temperature monitoring Power sequencing and reset Field upgrades FPGA configuration and control Clock configuration I²C bus access USB 2.0 Voltage overrides
Cooling	Liquid-cooled or air-cooled
Size	 ¾-length, standard-height PCle dual-slot card 254mm x 111.15mm Max. component height: 34.79mm dual slot

Development Tools

System development	BittWorks II Toolkit - host, command, and debug tools for BittWare hardware		
FPGA development	 FPGA Examples - example Vivado projects Xilinx Tools - Vivado® Design Suite 		

XUPVV4 Ordering Options

RW	Ruggedization 0U = Commercial (0°C to 50°C)	GG	DIMM 3‡ 00 = None* R4 = DDR4 16GB RDIMM R5 = DDR4 32GB RDIMM R7 = DDR4 128GB RDIMM	М	QSFP Configuration 4 = 4 QSFP cages*
4	UltraScale Printed Wiring Board G = Optimized for VU13P*				SI SAS
BBBB	FPGA Type and Size 13VP = Virtex VU13P*		L5 = DDR4 32GB LRDIMM L6 = DDR4 64GB LRDIMM	N	SlimSAS 0 = Installed*
C	FPGA Core Speed Grade 1 = Slower 2 = Standard* 3 = Faster	L7 = DDR4 128GB LRDIMM Q5 = QDRII+ x18 576 Mb (dual 288Mb) HH DIMM 4‡		0	Factory JTAG Header 0 = Not Installed* 1 = Installed
D	FPGA Temperature Range E = Extended (Tj = 0 to +100C)*	R4 =	00 = None* R4 = DDR4 16GB RDIMM R5 = DDR4 32GB RDIMM	Р	USB-to-JTAG 1 = Installed*
EE	DIMM 1‡ 00 = None* R4 = DDR4 16GB RDIMM R5 = DDR4 32GB RDIMM R7 = DDR4 128GB RDIMM L5 = DDR4 32GB LRDIMM		R7 = DDR4 128GB RDIMM L5 = DDR4 32GB LRDIMM L6 = DDR4 64GB LRDIMM L7 = DDR4 128GB LRDIMM Q5 = QDRII+ x18 576 Mb (dual 288Mb)	Q	Heatsink 2 = Passive * L = Liquid cooling
	L6 = DDR4 64GB LRDIMM L7 = DDR4 128GB LRDIMM Q5 = QDRII+ x18 576 Mb (dual 288Mb)	I	Oscillator S = Standard*	R	Mechanical Options 0 = Default* T = Terabox 1400D
FF	DIMM 2‡ 00 = None*	J	Clock Generator A 0 = 322.265625 MHz*	S	Misc. Configuration
	R4 = DDR4 16GB RDIMM R5 = DDR4 32GB RDIMM R7 = DDR4 128GB RDIMM	K	K Clock Generator B 0 = 322.265625 MHz*		0 = Default
	L5 = DDR4 32GB LRDIMM L6 = DDR4 64GB LRDIMM L7 = DDR4 128GB LRDIMM Q5 = QDRII+ x18 576 Mb (dual 288Mb)	L	Timing 0 = None*	Т	Assembly 6 = RoHS 6/6

- * Default
- † Contact Sky Blue or Zerif for availability
- ‡ DIMM sites 1/2 and sites 3/4 must have the same memory type, or be empty.

