

10Gbps SFP+ 1310nm 10km Single-Mode Optical Transceiver

KY-SFP-10G31-10

Features

- Operating data rate up to 11.1Gbps
- 1310nm DFB-LD Transmitter
- Distance up to 10km
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface, Hot Pluggable
- Compliant with MSA SFP+ Specification SFF-8431
- Compliant with IEEE 802.3ae 10GBASE-LR/LW
- Power Dissipation < 1.0W
- Built-in Digital Diagnostic Function
- Operating Case Temperature Standard : 0°C to +70°C

Applications

- 10GBASE-LR at 10.31Gbps
- 10GBASE-LW at 9.95Gbps
- OBSAI rates 6.144 Gb/s, 3.072 Gb/s, 1.536 Gb/s, 0.768Gb/s
- CPRI rates 9.830 Gb/s,7.373Gb/s, 6.144 Gb/s, 4.915 Gb/s, 2.458 Gb/s, 1.229 Gb/s, 0.614Gb/s
- Other Optical Link

Description

The KY-SFP-10G31-10 series single mode transceiver is small form factor pluggable module for serial optical data communications such as IEEE 802.3ae 10GBASE-LR/LW. It is with the SFP+ 20-pin connector to allow hot plug capability.

This module is designed for single mode fiber and operates at a nominal wavelength of 1310 nm. The transmitter section uses a 1310nm multiple quantum well DFB laser and is a class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated In GaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Specifications

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	3.6	V
Storage Temperature	Ts	-40	+85	°C
Input Voltage	Vin	-0.5	Vcc	V
Output Current	lo	-	50	mA

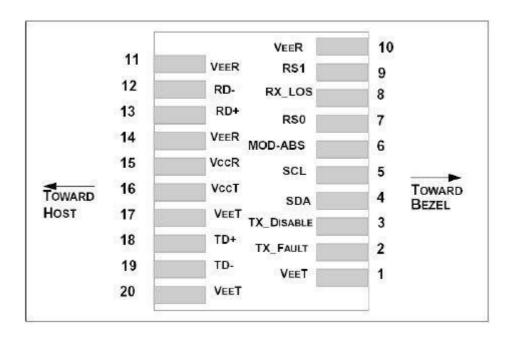
Table 2 - Recommended Operating Conditions

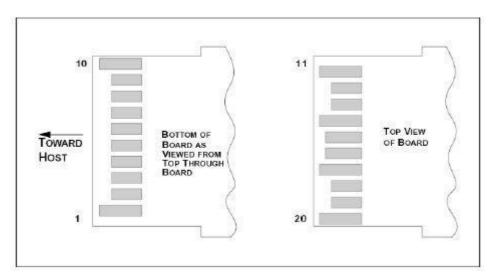
Parameter		Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Standard	Tc	-5		70	° C
	Industrial	Tc	-40		85	° C
Power Supply Voltage		VCC	3.15	3.3	3.45	V
Power Supply Current		ICC			300	mA
Surge Current		lSurge			+30	mA
Baud Rate			0.6		11.1	Gbps

Table 3 - Performance Specifications – Electrical

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
			Transmitte	r				
CML Inputs(Differential)	Vin	150		1200	mVpp	AC coupled inputs		
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms@ DC		
Tx_DISABLE Input Voltage - High		2		Vcc+0.3	V			
Tx_DISABLE Input Voltage - Low		0		0.8	V			
Tx_FAULT Output Voltage - High		2		Vcc+0.3	V	Io = 400μA; Host Vcc		
Tx_FAULT Output Voltage - Low		0		0.5	V	Io = -4.0mA		
	Receiver							
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs		

Output Impedance	Z _{out}	85	100	115	ohms	
(Differential)						
Rx_LOS Output		2		Vcc+0.3	V	lo = 400μA; Host Vcc
Voltage - High						
Rx_LOS Output		0		0.8	V	lo = -4.0mA
Voltage - Low						
	VoH	2.5			V	With Serial ID
MOD_DEF (2:0)	VoL	0		0.5	V	

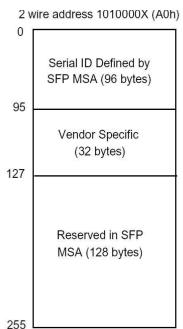

Table 4- Optical and Electrical Characteristics

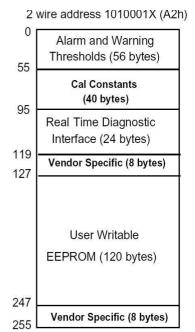

	Parameter	Symbol	Min.	Typical	Max	Unit	Notes
9 µ m	Core Diameter SMF	-	-	10	-	km	
	Data Rate	-	0.6	-	11.1	Gbps	
			Transmitter				-
Ce	enter Wavelength	λ _C	1270	1310	1355	nm	
Spe	ectral Width (RMS)	Δλ	-	-	1	nm	
Ave	rage Optical Power	P _{out}	-8.2	-	0.5	dBm	
Average P	ower of OFF Transmitter	P _{off}	-	-	-30	dBm	
I	Extinction Ratio	ER	3.5	-	-	dB	
Side M	ode Suppression Ratio	SMSR	30			dB	
Transmi	tter Dispersion Penalty	TDP	-	-	3.2	dB	
Input D	oifferential Impedance	Z _{IN}	90	100	110	Ω	
TX_I	Disable Assert Time	t_off	-	-	10	us	
TX_D	ISABLE Negate Time	t_on	-	-	1	ms	
TX_BISA	BLE time to start reset	t_reset	10	-	-	us	
	ne to initialize, include reset of TX FAULT	t_init	-	-	300	ms	
TX_FAUL	T from fault to assertion	t fault	-	-	100	us	
	Total Jitter	TJ	-	-	0.28	UI(p-p)	
Dat	a Dependant Jitter	DDJ	-	-	0.1	UI(p-p)	
Uı	ncorrelated Jitter	UJ	-	-	0.023	RMS	
			Receiver				
Ce	enter Wavelength	λ_{C}	1260	-	1565	nm	
Re	ceiver Sensitivity	Pmin	-	-	-14.4	dBm	
Re	eceiver Overload	Pmax	0.5	-	-	dBm	1
Op	otical Return Loss	ORL	-	-	-12	dB	
	LOS De-Assert	LOS _D	-	-	-16	dBm	
	LOS Assert	LOS _A	-28	-	-	dBm	
100	High	-	2.0	-	VCC+0.3	W	
LOS	Low	-	0	-	0.8	V	

Note 1: Measured with a PRBS 2^{31} -1 test pattern @ 10.3125Gbps, BER \leq 10⁻¹²

SFP+ Transceiver Electrical Pad Layout

Table 5 – Diagnostics Specification


Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	°C ±3°C	
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	0 to +5	dBm	±3dB	Internal / External
RX Power	-23 to -3	dBm	±3dB	Internal / External



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. The digital diagnostic memory map specific data field defines as following.

Pin Function Definitions

Pin	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	MOD_DEF(2)	Serial Data Signal	3	2-wire Serial Interface Data Line. Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	2-wire Serial Interface Clock. Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	Rate Select 0, optionally controls SFP+ module receiver. This pin is pulled low to VeeT with a >30K resistor.
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL)	1	Rate Select 1, optionally controls SFP+ module transmitter. This pin is pulled low to VeeT with a >30K resistor
10	VeeR	Receiver ground	1	Note 5

11	VeeR	Receiver ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver ground	1	Note 5
15	VccR	VccR Receiver Power 2 3.3		3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

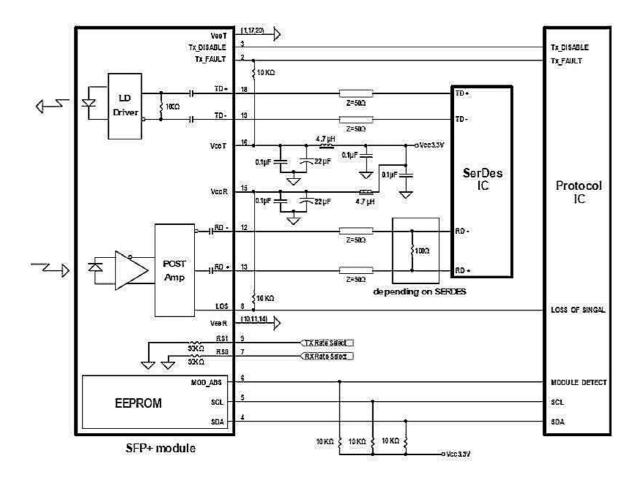
Plug Seq.: Pin engagement sequence during hot plugging.

- 1. TX Fault is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K^{-1}0K\Omega$ resistor. Its states are:

Low (0 - 0.8V): Transmitter on (>0.8, < 2.0V): Undefined

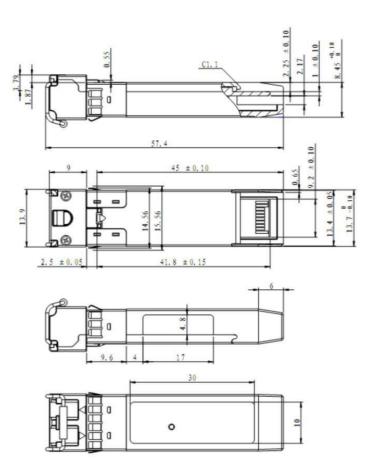
High (2.0 – 3.465V): Transmitter Disabled

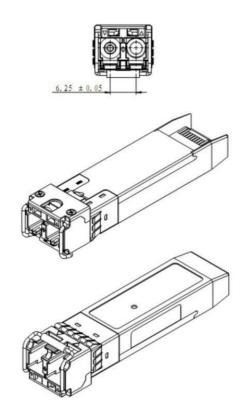
Open: Transmitter Disabled


- 3. Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 6. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 700 Mv differential (185 –350 Mv single ended) when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300mA. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30Ma greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.
- 8. TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 1200 Mv (75 600Mv single-ended), though it is recommended that values between 150 and 1200 Mv differential (75 600Mv single-ended) be used for best EMI performance.




Recommended Interface Circuit

Mechanical Dimensions

Ordering Information

Part No.	Data Rate (Gbps)	Wavelength (nm)	Connector Type	Transmission Distance	Operating case temperature (°C)	Digital Diagnostics
KY-SFP-10G31-10	≤ 11.1	1310	LC	10km	0 to +70	Yes

Addresses, phone number and fax number also have been listed at www.kayainstruments.com. Please e-mail us at info@kayainstruments.com or call us for assistance.

All statements, technical information, and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. Please contact KAYA Instruments for more information.

