

1000BASE-LX SFP 1310nm 10km DOM Optical Transceiver

KY-SFP1G-LX-31

Features

- Operating Data Rate up to 1.25Gbps
- 10km with 9/125 μm SMF
- Single 3.3V Power Supply and TTL Logic Interface
- Hot-Pluggable SFP Footprint Duplex LC Connector Interface
- Class 1 FDA and IEC60825-1 Laser Safety Compliant
- Built-in digital diagnostic functions, including optical power monitoring
- Commercial Temperature Range: 0~+70°C
- Compliant with MSA SFP Specification
- Compliant with SFF-8472

Applications

- Gigabit Ethernet Switches and Routers
- Fiber Channel Switch Infrastructure
- Other Optical Links

Description

The KY-SFP1G-LX-31 series single-mode transceivers are small form factor pluggable module for bidirectional serial optical data communications such as Gigabit Ethernet 1000BASE-LX and Fiber Channel 1x SM-LC-L FC-PI. It is with the SFP 20-pin connector to allow hot plug capability. This module is designed for single mode fiber and operates at a nominal wavelength of 1310nm.

The transmitter section uses a multiple quantum well 1310nm laser and is a class 1 laser compliant according to International Safety

Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC. The KY-SFP1G-LX-31 series are designed to be compliant with SFF-8472 SFP Multi-source Agreement (MSA).

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain: Zerif Technologies Ltd. Winnington House, 2 Woodberry Grove Finchley, London N12 0DR +44 115 855 7883, info@zerif.co.uk www.zerif.co.uk

Product Specifications

Table 1 - General Product Characteristics

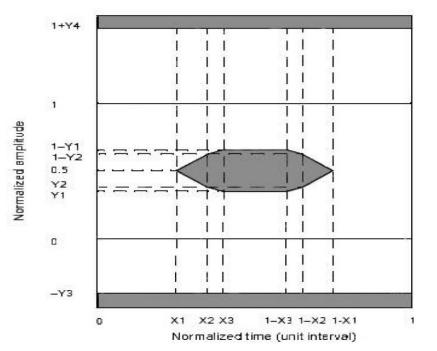
Parameter	Symbol	Min	Max	Unit
Bit Rate	BR		1.25	Gb/s
Max. Supported Link	L _{MAX}		10	km

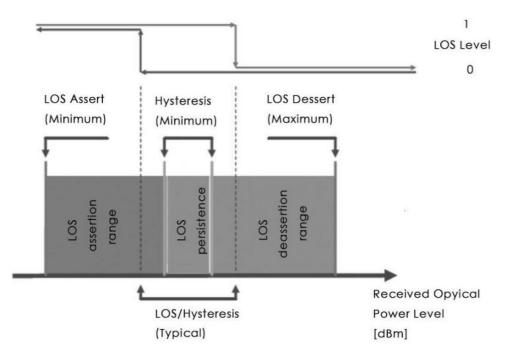
Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Relative Humidity		-	95	%

*Exceeding any one of these values may destroy the device immediately

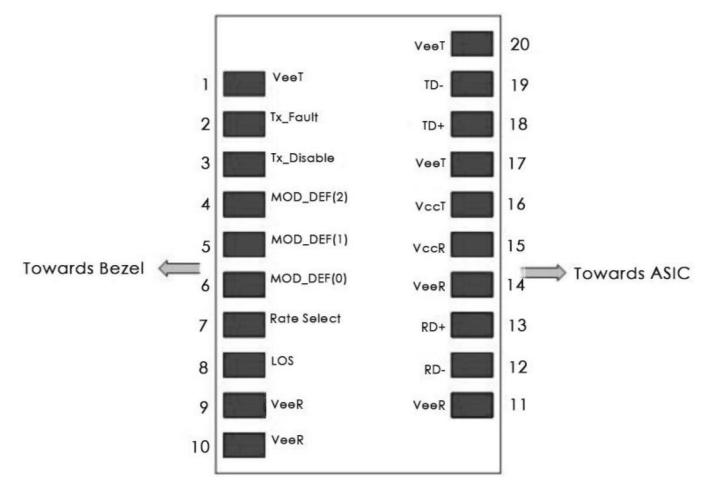
Table 3 - Optical and Electrical Characteristics


Parameter	Symbol	Min.	Typical	Max	Unit	Notes
9µm Diameter MMF	L		10		Km	
Power Supply Voltage	V _{cc}	3.15	3.3		V	
Power Supply Current	I _{CC}				Ma	
Date Rate	GBE			1.25	Gbps	
	FC			1.063		
		Transmitter	L			
Center Wavelength	λ_{c}	1260	1310	1360	nm	
Spectral Width (RMS)	Δλ	-	-	4	nm	
Average Optical Power	P _{out}	-9	-	-3	dBm	1
Extinction Ratio	ER	9	-	-	Db	2
Rise/Fall Time(20%~80%)	tr/tf	-	-	0.26	ps	
Total Jitter	Tj	-	-	0.43	UI	2
Output Optical Eye		IEEE802.3z and A	NSI Fiber Channe	el Compliant		2, 4
TX_Disable Assert Time	t_off	-	-	10	us	
Pout@TX Disable Asserted	Pout	-	-	-45	dBm	
		Receiver				
Center Wavelength	λ_{c}	1260	-	1600	nm	
Receiver Sensitivity	P _{min}	-	-	-21	dBm	3
Receiver Overload	P _{max}	-3	-	-	dBm	
Optical Return Loss	ORL	12	-	-	Db	
LOS De-Assert	LOS _D	-	-	-22	dB	


LOS Assert	LOS _A	-35	-	-	dBm	
LOS Hysteresis	-	0.5	-	-	Db	4

Notes:

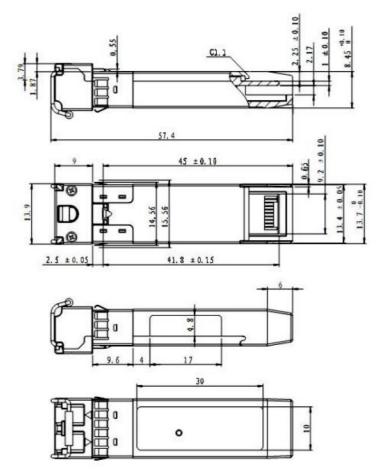
- 1. Output is coupled into a 62.5/125 mm multi-mode fiber.
- 2. Filtered, measured with a PRBS 27-1 test pattern @1.25Gbps.
- 3. Minimum avera0ge optical power measured at BER less than 1E-12, with a 27-1 PRBS and ER=9 Db.
- 4. Eye Pattern Mask.

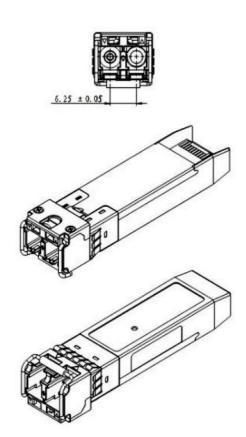


LOS Hysteresis

Pin Description

Pin	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
	TX FAULT	Transmitter Fault	3	Note 1
2		Indication		
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	MOD_DEF(2)	Serial Data Signal	3	2-wire Serial ID Interface. Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	2-wire Serial ID Interface. Note 3
6	MOD_DEF(0)	MOD_ABS	3	Grounded within the module. Note 3
7	Rate Select	Not Connect	3	Function not available
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver ground	1	Note 5
10	VeeR	Receiver ground	1	Note 5
11	VeeR	Receiver ground	1 Note 5	
12	RD-	Inv. Received Data Out	3 Note 6	


13	RD+	Received Data Out	3	Note 7
14	VeeR	Receiver ground	1	Note 5
15	VccR	Receiver Power	2	3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5


Notes:

- TX Fault is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kinds. Low indicates normal operation. In low state, the output will be pulled to < 0.8V.
- TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 10 KΩ resistor. Its states are: Low (0 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0 3.465V): Transmitter Disabled Open: Transmitter Disabled
- 3. Mod-Def 0, 1,2. These are the module definition pins. They should be pulled up with a 4.7 10 KΩ resistor on the host board. The pullup voltage shall be VccT or VccR. Mod-Def 0 is grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.</p>
- 5. VeeR and VeeT may be internally connected within the SFP module.
- 6. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required the host board. The voltage swing on these lines will be between 400 and 2000 mV differential (200 –1000 mV single ended) when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- 8. TD-/+: TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400–2000mV (200–1000mV single- ended).

Mechanical Dimensions

Ordering Information

Part No.	Data Rate (Gbps)	Wavelength (nm)	Connector	Transmission	Operating case	Digital
	Data Nate (Gbps)	wavelength (mm)	Туре	Distance	temperature (°C)	Diagnostics
KY-SFP1G-LX-31	≤ 1.25	1310	LC	10km	0 to +70	Yes

Addresses, phone number and fax number also have been listed at www.kayainstruments.com. Please e-mail us at info@kayainstruments.com or call us for assistance.

All statements, technical information, and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. Please contact KAYA Instruments for more information.

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain: Zerif Technologies Ltd. Winnington House, 2 Woodberry Grove Finchley, London N12 0DR +44 115 855 7883, info@zerif.co.uk www.zerif.co.uk