

KAYA Frame Grabbers Programming Guide

September 2019

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain: Zerif Technologies Ltd. Winnington House, 2 Woodberry Grove Finchley, London N12 0DR +44 115 855 7883, info@zerif.co.uk www.zerif.co.uk

Content:

1	Figures and	d Tables	3
2	Introductio	n	5
	2.1 Safe	ety Precautions	5
	2.2 Dise	claimer	6
3	Start-up gu	iide overview	7
	3.1 Ove	erview	7
	3.2 Dire	ectories and file hierarchy	8
4	Hardware	Information	9
	4.1 Har	dware Information	9
5	Device Gen	eral Control	10
	5.1 Tim	iestamp	10
6	Camera Di	scovery and PoCXP control	11
	6.1 Can	nera discovery process overview	11
	6.2 PoC	XP automatic management	11
	6.3 Mai	nual PoCXP control configuration	14
	6.4 Can	nera discovery mode	16
	6.4.1	Camera discovery delay	17
	6.4.2	Normal camera discovery process	18
	6.4.3	Manual camera discovery	18
	6.4.4	Silent Discovery Mode	19
	6.4.5	Komodo 4R4T system configuration example	19
7	Camera Se	lector	22
	7.1 Can	nera Selector parameter	22
8	Stream Con	ntrol and Statistics	23
	8.1 Trai	nsport control	23
	8.2 Acq	uisition Stream statistics parameters	23
	8.2.1	Frame Acquisition Latency	24
9	Image Proc	cessing	25
	9.1 Ima	ge Format Control	25
	9.1.1	FIFO Threshold	26
	9.1.2	Vertical decimation	26
	9.1.3	Segment accumulation	26
	9.1.4	Frames per Buffer	27
			21
	9.1.5	Bayer de-mosaic	-20
	9.1.5 9.1.6	Data Packing Mode	30
	9.1.5 9.1.6 9.2 Col	Data Packing Mode	30 31
10	9.1.5 9.1.6 9.2 Cole 9.2.1	Data Packing Mode or transformation Monochrome image special case	30 31 32
10	9.1.3 9.1.6 9.2 Col- 9.2.1 9 I/O Contro	Data Packing Mode or transformation Monochrome image special case	30 31 32 34
10	9.1.3 9.1.6 9.2 Cole 9.2.1 9 I/O Contro 10.1 Can	Data Packing Mode or transformation Monochrome image special case ller nera Trigger	30 31 32 34 34
10	9.1.3 9.1.6 9.2 Col- 9.2.1 9 I/O Contro 10.1 Can 10.1.1	Bayer de-mosaic Data Packing Mode or transformation Monochrome image special case ller nera Trigger Camera Trigger activation mode Camera Trigger signals filter	30 31 32 34 34 37
10	9.1.3 9.1.6 9.2 Col- 9.2.1 9 I/O Contro 10.1 Can 10.1.1 10.1.2 10.1.3	Bayer de-mosaic Data Packing Mode or transformation Monochrome image special case ller nera Trigger Camera Trigger signals filter Camera Trigger Delay	30 31 32 34 34 37 37 37
10	9.1.3 9.1.6 9.2 Col- 9.2.1 9 I/O Contro 10.1 Can 10.1.1 10.1.2 10.1.3 10 1 4	Bayer de-mosaic Data Packing Mode or transformation Monochrome image special case Iler nera Trigger Camera Trigger activation mode Camera Trigger signals filter Camera Trigger Delay Camera Trigger Event	30 31 32 34 34 37 37 38 38
10	9.1.3 9.1.6 9.2 Col- 9.2.1 1/O Contro 10.1 Can 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	Bayer de-mosaic Data Packing Mode or transformation Monochrome image special case ller mera Trigger Camera Trigger activation mode Camera Trigger signals filter Camera Trigger Delay Camera Trigger Event Steps to properly configure Camera Triggers	30 31 32 34 34 37 37 38 38 38

10.2 Acc	quisition (Frame Grabber) Triggers	39
10.2.1	Trigger activation mode	41
10.2.2	Trigger signals filter	41
10.2.3	Trigger Delay	42
10.2.4	Trigger Event	42
10.2.5	Steps to properly configure Frame Grabber Triggers	42
10.3 End	coder trigger functionality	43
10.3.1	Encoder trigger filter	45
10.3.2	Encoder position and position trigger	45
10.3.3	Encoder output mode	46
10.3.4	Encoder Event	46
10.4 Tin	ner trigger signals	46
10.4.1	Timer activation mode	48
10.4.2	Timer delay, duration and signal inversion	49
10.4.3	Timer Event	49
10.5 Au	xiliary GPIO block	50
10.5.1	Digital I/O Event	52
10.6 Use	er Output block	53
10.7 Trig	gger Source options	54
10.8 Trig	gger Controls Layout in Vision Point App	55
11 Multiple F	Frame Grabbers Synchronization	57
12 Diagnostic	Tools and Tests	59
12.1 Coa	aXPress connectivity test	59

Index of Tables

TABLE 1 : HARDWARE INFORMATION PARAMETERS 9	1
TABLE 2 : TIMESTAMP PARAMETERS 10	1
TABLE 3 : POCXP CONTROL PARAMETERS	
TABLE 4 : CAMERA DISCOVERY PARAMETERS	,
TABLE 5 : CAMERA SELECTOR PARAMETERS	
TABLE 6 : TRANSPORT CONTROL PARAMETERS	Ì
TABLE 7 : ACQUISITION STREAM STATISTICS PARAMETERS	
TABLE 8 : IMAGE FORMAT CONTROL PARAMETERS)
TABLE 9 : COLOR TRANSFORMATION CONTROL PARAMETERS	1
TABLE 10 : CAMERA TRIGGER PARAMETERS)
TABLE 11 : ACQUISITION TRIGGERS PARAMETERS	
TABLE 12 : AVAILABLE CONFIGURATIONS FOR ENCODERS 44	
TABLE 13 : ENCODER SELECTION OPTIONS	
TABLE 14 : AVAILABLE CONFIGURATIONS FOR TIMERS	,
TABLE 15 : TIMER SELECTION OPTIONS 47	,
TABLE 16 : AVAILABLE CONFIGURATIONS FOR INPUT I/O 50	1
TABLE 17 : LINE SELECTION OPTIONS	
TABLE 18 : AVAILABLE CONFIGURATIONS FOR USER OUTPUTS	ļ
TABLE 19 : USER OUTPUT SELECTION OPTIONS	Ì
TABLE 20 : FRAME GRABBER I/O SOURCE	
TABLE 21 : FRAME GRABBER REQUIRED SETTINGS	ì
TABLE 22 : COAXPRESS CONNECTION TEST PARAMETERS 59	1

Index of Figures

FIGURE 1 : MAIN DIRECTORY AND FILE HIERARCHY	8
FIGURE 2 : EXAMPLES AND SAVE DIRECTORIES	8
FIGURE 3 : AUTOMATIC POCXP MONITORING ACTIVATE/DEACTIVATE IN VISION POINT APP	12
FIGURE 4 : POCXP AUTOMATIC MANAGEMENT IN VISION POINT APP	14
FIGURE 5 : VISION POINT APP POCXP CONTROL ON TOOLBAR MENU	15
FIGURE 6 : POCXP CONTROLS IN VISION POINT APP	16
FIGURE 7 : SETTING UP CAMERA DISCOVERY DELAY IN VISION POINT APP	18
FIGURE 8 : MANUAL CAMERA DETECTION CONFIGURATIONS IN VISION POINT APP	19

2.1 Safety Precautions

Please take a minute to read carefully the precautions listed below in order to prevent unnecessary

injuries to you or other personnel or cause damage to property.

- Before using the product, read these safety precautions carefully to assure correct use.
- These precautions contain serious safety instructions that must be observed.
- After reading through this manual, be sure to act upon it to prevent misuse of product.

In the event of a failure, disconnect the power supply. If the product is used as is, a fire or electric shock may occur. Disconnect the power supply immediately and contact our sales personnel for repair.

If an unpleasant smell or smoking occurs, disconnect the power supply.

If the product is used as is, a fire or electric shock may occur. Disconnect the power supply

immediately. After verifying that no smoking is observed, contact our sales personnel for repair.

Do not disassemble, repair or modify the product.

Otherwise, a fire or electric shock may occur due to a short circuit or heat generation. For inspection, modification or repair, contact our sales personnel.

Do not touch a cooling fan.

As a cooling fan rotates in high speed, do not put your hand close to it. Otherwise, it may cause injury to persons. Never touch a rotating cooling fan.

Do not place the product on unstable locations.

Otherwise, it may drop or fall, resulting in injury to persons or failure.

If the product is dropped or damaged, do not use it as is.

Otherwise, a fire or electric shock may occur.

Do not touch the product with a metallic object.

Otherwise, a fire or electric shock may occur.

Do not place the product in dusty or humid locations or where water may splash. Otherwise, a fire or electric shock may occur.

Do not get the product wet or touch it with a wet hand.

Otherwise, the product may break down or it may cause a fire, smoking or electric shock.

Do not touch a connector on the product (gold-plated portion).

Otherwise, the surface of a connector may be contaminated with sweat or skin oil, resulting in contact failure of a connector or it may cause a malfunction, fire or electric shock due to static electricity.

Do not use or place the product in the following locations:

- Humid and dusty locations
- Airless locations such as closet or bookshelf
- Locations which receive oily smoke or steam
- Locations close to heating equipment
- Closed inside of a car where the temperature becomes high
- Static electricity replete locations
- Locations close to water or chemicals

Otherwise, a fire, electric shock, accident or deformation may occur due to a short circuit or heat generation.

Do not place heavy things on the product.

Otherwise, the product may be damaged.

Be sure to drain static electricity from body before you touch any electronics component The electronic circuits in your computer and the circuits on KAYA's Frame Grabber board are sensitive to static electricity and surges. Improper handling can seriously damage the circuits. In addition, do not let your clothing come in contact with the circuit boards or components. Otherwise, the product may be damaged.

2.2 Disclaimer

This product should be used for interfacing of imaging devices and acquiring of video streams.

KAYA Instruments assumes no responsibility for any damages resulting from the use of this product for purposes other than those stated.

Even if the product is used properly, KAYA Instruments assumes no responsibility for any damages caused by the following:

- Earthquake, thunder, natural disaster or fire resulting from the use beyond our responsibility,

acts caused by a third party or other accidents, the customer's willful or accidental misuse or use under other abnormal conditions.

- Secondary impact arising from use of this product or its unusable state (business interruption or others).

- Use of this product against the instructions given in this manual or malfunctions due to connection to other devices.

KAYA Instruments assumes no responsibility or liability for:

- Erasure or corruption of data arising from use of this product.

- Any consequences or other abnormalities arising from use of this product, or damage of this product not due to our responsibility or failure due to modification.

Repair of this product is carried out by replacing it on a chargeable basis, not repairing the faulty devices. However, non-chargeable replacement is offered for initial failure if such notification is received within two weeks after delivery of the product.

3.1 Overview

The purpose of this document is to describe the provided functionality and features of KAYA's Frame Grabbers.

Camera connectivity and streaming can be easily achieved in few easy steps and almost no configurations. Camera control is provided through standard GenICam interface subordinate to camera's descriptive schema (xml) file.

Advanced features and custom configurations can be done to enhance streaming and image processing of camera output. These are available using interactive GenICam interface and provided API functionality.

SDK functionality is subject to hardware device and burned firmware capabilities. A firmware and software upgrade might be needed to support complete functionality set.

For more information about API functionality and SDK usage please refer to "Vision Point API Data Book".

All the parameters described in this document are frame grabber parameters and can be accessed from GUI Frame Grabber tab in the project navigator or from API using KYFG_SetGrabberValue and KYFG_GetGrabberValue function variations.

3.2 Directories and file hierarchy

The directory hierarchy of Vision Point App as can be seen after complete installation.

Figure 1 : Main directory and file hierarchy

Figure 2 : Examples and save directories

4.1 Hardware Information

The Hardware information contains parameters describing the currently connected hardware device. The information includes device capabilities, basic connectivity details and currently running firmware.

This information can be used to identify the specific card and its capabilities, and inform if a firmware update is needed to support complete functionality set. Also it can help to indicate about certain performance issues.

The hardware information parameters can be found in Table 1.

				Possible values		
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam C</i>	Category: HardwareIn	formation				
Firmware Version	The firmware version of the device	FirmwareVersion	Float			
Serial Number	Serial Number of the device	SerialNumber	Integer			
Device Revision	Revision of the device	DeviceRevision	Integer			
Device Memory Size	Device memory size in bytes	DeviceMemorySize	Integer			
Maximum Links	Maximum available links on the device	MaxLinks	Integer			
Device PCIe Generation	Supported generation of connected PCIe	DevicePciGeneration	Integer	1,2,3		
PCIe lanes	Number of connected PCIe lanes	DevicePciLanes	Integer	1,2,4,8		
Device Temperature	Device CPU Temperature	DeviceTemperature	Integer			Temperature is in °C

Table 1 : Hardware information parameters

5.1 Timestamp

KAYA Frame grabbers include a Timestamp mechanism for tagging frames and I/O events. Timestamp parameter reflects a global counter value, in units of nanoseconds. Counter value is represented by 64bit unsigned integer which wraps around when maximum value is reached. Counter value can be read from "Timestamp" register. "TimestampReset" command force resets the timestamp counter to 0.

Timestamp counter may not be stopped, nevertheless the "TimestampLatch" may capture the counter value in the moment it is issued. The captured value will be stored in 64bit unsigned integer register "TimestampLatchValue" until the next "TimestampLatch" command is issued.

The timestamp parameters are summarized in Table 2.

		Gen <i>Cam name</i>	Туре	Possible values		
Parameter	Description			Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam C</i>	Category: DeviceContro	1				
Timestamp	Current value of the device timestamp counter.	Timestamp	Integer(8 bytes)			Value in nanoseconds
Timestamp Reset	Resets the current value of the device timestamp counter	TimestampReset	Command	1 - Activate		
Timestamp Latch	Latches the current timestamp counter into TimestampLatchValue	TimestampLatch	Command	1 - Activate		
Timestamp latched value	Latched value of the timestamp counter	TimestampLatchValue	Integer(8 bytes)			Value in nanoseconds

Table 2 : Timestamp parameters

6.1 Camera discovery process overview

KAYA's Frame Grabbers API provides different camera discovery modes. By default, the Normal discovery mode is active which includes camera negotiation, reset sequence and setting the camera's default speed and topology. The different camera discovery modes are available by setting existing configurations.

Manual control and automatic management of PoCXP is provided for CoaXPress cameras which draw power via coax cables, instead of external power supply.

6.2 PoCXP automatic management

Starting from Vision Point API 5.0 the PoCXP management has been changed and automatic power management was improved. KAYA Software stack is now constantly monitoring an available connection state and turning PoCXP on/off automatically. The power of a camera will be turned on in the background by the Frame Grabber, even when no Vision Point or other KAYA API based application is running.

This improved feature allows an effortless and quick connection to CoaXPress cameras, which support automatic PoCXP management.

This feature is subject to compatible hardware, firmware and software support. The actual availability of this feature in a particular setup (Grabber card, firmware and software) can be checked by reading Grabber parameter "PoCXPAutoAvailable". In case the result is positive, the feature is otherwise. this feature supported, is not supported by the given combination. "PoCXPAutoActive" can be used to activate/deactivate this feature on a particular Grabber during application run-time.

In addition, the entire functionality of automatic PoCXP monitoring can be activated/deactivated using the following option found in Vision Point-> Tools-> Options. Please note that this global setting only takes effect after system reboot and applied to all connected Grabbers. If you choose to deactivate this functionality globally you can still activate it on a particular Grabber using above mentioned

"PoCXPAutoActive" command at run-time. This command applied to Grabber immediately.

Figure 3 : Automatic PoCXP monitoring activate/deactivate in Vision Point App

In case the feature is not supported or deactivated, legacy manual PoCXP management should be used as described in section 6.3.

In case the feature is supported and activated, the following commands can be used to start/stop camera connection monitoring and changing PoCXP state according to the presence of a camera on a given CoaXPress channel.

- To forcibly set PoCXP state to OFF execute command "CxpPoCxpTurnOff". In Vision Point GUI it is found at Frame Grabber tab -> DeviceControl -> CxpPoCxpHostConnectionSelector -> CxpPoCxpTurnOff
- To activate automatic power management execute command "CxpPoCxpAuto". In Vision Point GUI it is found at Frame Grabber tab -> DeviceControl -> CxpPoCxpHostConnectionSelector -> CxpPoCxpAuto
- To read current state of the PoCXP monitoring read the "CxpPoCxpStatus" parameter. In Vision Point GUI it is found at Frame Grabber tab -> DeviceControl -> CxpPoCxpHostConnectionSelector -> CxpPoCxpAuto

These three parameters are implemented according to GenICam_SFNC standard document with the following addition: CXP channels affected by these commands depend on the current state of the "CxpPoCxpHostConnectionSelector" parameter value. When this value is "-1" the command is applied to all available CXP channels, otherwise they are applied only to single channel specified by "CxpPoCxpHostConnectionSelector".

				Possible values		
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam Category: D</i>	eviceControl					
CxpPoCxpAuto	Activate automatic control of the Power over CoaXPress (PoCXP) for the Link	CxpPoCxpAuto [CxpPoCxpHostConnectionSelectorSelector]	Command			
CxpPoCxpTurnOff	Disable Power over CoaXPress (PoCXP) for the Link	CxpPoCxpTurnOff [CxpPoCxpHostConnectionSelectorSelector]	Command			
PoCXPAutoActive	Activates / deactivates automatic PoCXP	PoCXPAutoActive [CxpPoCxpHostConnectionSelectorSelector]	Boolean	0 - false 1 - true		
CxpPoCxpStatus	Returns the Power over	CxpPoCxpStatus	Enumeration	-1	Mixed	Mixed statuses
	(PoCXP)			0	Auto	Automatically managed
	status of the			1	Off	Forced Off
	Device IIIK			2	Tripped	Tripped

Table 3 : Automatic PoCXP control parameters

Please note that legacy Grabber parameters "PoCXP0" ... "PoCXP7" are still available when automatic PoCXP is active but they become read-only in this case. You can read values of those parameters to get the current state of PoCXP on each channel.

PoCXP 0 control	On	
PoCXP 1 control	Off	
PoCXP 2 control	Off	
PoCXP 3 control	Off	
PoCXP 4 control	Off	
PoCXP 5 control	Off	
PoCXP 6 control	Off	
PoCXP 7 control	Off	
PoCXPAuto available	Yes	
PoCXPAuto Active	✓ True	
 CxpPoCxpHostConnectionSelector 	All CoaXPress physical host connecti	
CxpPoCxpAuto	Execute	
CxpPoCxpTurnOff	Execute	
CxpPoCxpStatus	Automatically managed	

Figure 4 : PoCXP automatic management in Vision Point App

Please refer to the following table for additional information regarding the devices, which support the described feature.

Hardware device	Firmware version	Details
Komodo CoaXPress 4ch and 8ch	4.11 and above	Automatic power monitoring support Note: Starting from hardware revision no. 3
Komodo II CoaXPress	All firmware versions	Automatic power monitoring support
Predator CoaXPress	Not supported	No power monitoring support Please refer to Manual PoXCP control section
Predator II CoaXPress	All firmware versions	Automatic power monitoring support

Table 4 : Automatic PoCXP supported devices

6.3 Manual PoCXP control configuration

This section describes the manual control of the PoCXP feature, provided by using the dedicated functions via GUI and API.

		a a		Possil	ble values			
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks		
Gen <i>Cam C</i>	Gen <i>Cam Category: FrameGrabberControl</i>							
PoCXP 0 control	Frame grabber PoCXP channel 0 control	PoCXP0	Enumeration	0	PoCXPOff PoCXPOn			
PoCXP 1 control	Frame grabber PoCXP channel 1 control	PoCXP1	Enumeration	0	PoCXPOff PoCXPOn			
PoCXP 2 control	Frame grabber PoCXP channel 2 control	PoCXP2	Enumeration	0 1	PoCXPOff PoCXPOn			
PoCXP 3 control	Frame grabber PoCXP channel 3 control	PoCXP3	Enumeration	0 1	PoCXPOff PoCXPOn			
PoCXP 4 control	Frame grabber PoCXP channel 4 control	PoCXP4	Enumeration	0 1	PoCXPOff PoCXPOn			
PoCXP 5 control	Frame grabber PoCXP channel 5 control	PoCXP5	Enumeration	0 1	PoCXPOff PoCXPOn			
PoCXP 6 control	Frame grabber PoCXP channel 6 control	PoCXP6	Enumeration	0 1	PoCXPOff PoCXPOn			
PoCXP 7 control	Frame grabber PoCXP channel 7 control	PoCXP7	Enumeration	0 1	PoCXPOff PoCXPOn			

Table 5 : Manual PoCXP control parameters

To change PoCXP using API the "PoCXPx" (x determines the Frame Grabber link index) parameter should be set to "PoCXPOn" or "PoCXPOff".

Example:

To turn ON power of Frame Grabber link 2, the following function call may be used:

KYFG_SetGrabberValueEnum_ByValueName(grabberHandle, "PoCXP2", "PoCXPOn");

Another option is to use function KYFG_SetGrabberValueEnum() using numeric values 0 and 1.

In the "Vision Point App" use PoCXP control buttons, for manual control of PoCXP, this can be found in the main Toolbar Menu.

17 _ = Frame Grabber: Komodo CoaXPress 🔻 С aria R

Figure 5 : Vision Point App PoCXP control on Toolbar Menu

To enable PoCXP press the 0 button – this will enable PoCXP on all links To disable PoCXP press the 0 button – this will disable PoCXP on all links To control individual PoCXP channel follow the PoCXP controls located under the "Frame Grabber Control" category as described in Figure 6.

<u>NOTE:</u> "Off" is the display name of this enumeration, the machine name is "PoCXPOff", and "PoCXPOn" is name of value that will switch power over CXP to "ON".

PoCXP 0 control	On	\checkmark
PoCXP 1 control	Off	
PoCXP 2 control	Off	
PoCXP 3 control	Off	
PoCXP 4 control	Off	
PoCXP 5 control	Off	
PoCXP 6 control	Off	
PoCXP 7 control	Off	

Figure 6 : PoCXP controls in Vision Point App

 \triangle <u>Caution</u>: Manually enabling PoCXP will drive 24V to all the Frame Grabber ports. Avoid hot plugging the camera while the PoCXP was manually enabled to reduce the risk of camera damage.

6.4 Camera discovery mode

Several discovery modes are provided to accommodate different camera discovery sequences and initialization processes. Some modes provide full camera initialization by negotiation and setting of default values. Others pre-define a connection or just search for connected cameras. Each mode is used for specific scenario and might yield a different result.

After a discovery mode is configured, initiate the scanning process using the KYFG_CameraScan() function. The camera discovery parameters are described in Table 6.

				Poss	ible values	
Parameter	Description	name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Car</i>	n Category: Device	Control				
Camera Discovery Delay	Time delay before start of camera discovery process	CameraDiscoveryDelay	Integer			In units of milliseconds (ms). Timeout to allow all connected cameras to power up and detected
Silent Discovery	Silent camera discovery process	SilentDiscovery	Enumeration	0	Off	Please refer to 6.4.4 Silent Discovery
Mode	without resetting any camera parameters. Only search for existing camera connection			1	On	Mode section for more information.

			1	1		
Camera	Indicates the	DeviceLinkCommandTimeout	Integer			If no response from
Command	command timeout					the camera upon
Timeout	of all links in					timeout end, a
	microseconds(us)					communication error
						will occur
Gen <i>Car</i>	n Category: Extend	edStreamFeatures \ ManualCam	eraDetection			
Manual		ManualCameraMode	Enumeration	0	Off	Please refer to 6.4.3
Camera		[CameraSelector]		1	On	Manual camera
Mode				-	0	discovery section for
						more information.
Manual		ManualCameraConnectionConfig	Enumeration	0x10028	x1_CXP_1	Values are similar to
Camera		[CameraSelector]		0x10030	x1_CXP_2	"ConnectionConfig"
Connection				0x10038	x1_CXP_3	parameter describing
Config				0x10040	x1_CXP_5	camera speed and
				0x10048	x1_CXP_6	topology
				0x20028	x2_CXP_1	
				0x20030	x2_CXP_2	
				0x20038	x2_CXP_3	
				0x20040	x2_CXP_5	
				0x20048	x2_CXP_6	
				0x40028	x4_CXP_1	
				0x40030	x4_CXP_2	
				0x40038	x4_CXP_3	
				0x40040	x4_CXP_5	
				0x40048	x4_CXP_6	
Manual	Selects the camera	ManualCameraChannelSelector		0	CameraChannel0	
Camera	channel for which	[CameraSelector]		1	CameraChannel1	
Channel	to configure the			2	CameraChannel2	
Selector	physical Frame			2	Comore Channel 2	
	Grabber link			3	CameraChaimers	
Manual	Physical Frame	ManualCameraFGLink		0-		
Camera	Grabber link index,	[CameraSelector]		<*MAX_FG		
Physical	where the camera	[ManualCameraChannelSelector]		LINKS -1>		
Frame	channel 1s					
Grabber	connected.					
Link						

* MAX_FG_LINKS – number of physical Frame Grabber RX links

Table 6 : Camera discovery parameters

To do so in Vision Point App, the "Scan Cameras" button should be used.

6.4.1 Camera discovery delay

The camera discovery delay sets the delay time before camera discovery is initiated. The discovery delay is set in milliseconds and simply waits the specified amount of time after camera scan call is initiated. At the end of the specified period, the camera discovery process will initiate according to the configured camera discovery mode.

✓ Device Control		
Camera Discovery Delay	2000	\checkmark
Camera Command Timeout	400,000.000	
Silent Discovery Mode	Off	

Figure 7 : Setting up Camera Discovery Delay in Vision Point App

6.4.2 Normal camera discovery process

The Frame Grabber card will power up with PoCXP disabled. PoCXP will be re-enabled during camera discovery process for PoCXP compatible links.

Normal camera discovery mode includes camera negotiation, reset sequence and setting the camera's default speed and topology.

By default, camera discovery will be terminated a short while after first camera was detected. If multiple cameras are powered and wormed-up at the time of camera discovery, they will all be detected (up to 4 cameras can be connected and discovered simultaneously).

Different cameras may have different boot-up times, until they are warmed up and ready for operation. In order to successfully detect such cameras a discovery delay should be optimized to match cameras' boot-up time.

Discovery process might take up to a minute to complete, which might hang up host application. To avoid such behavior, one might first manually enable the PoCXP, wait for the cameras to boot-up and then execute camera discovery process with short delay parameter.

6.4.3 Manual camera discovery

Manual camera discovery is to be done with the presumption that camera connectivity topology and communication speed is known for current discovery session.

Generally, Manual discovery is much faster and less restrictive. Nevertheless wrong Manual connectivity configurations might yield in unknown results and insufficient camera initialization. Manual discovery process steps:

- 1. Determine the camera speed, number of links and order of connection between camera channels and Frame Grabber links.
- Select the "CameraSelector" value for each camera wished to be connected and change "ManualCameraMode" to "On" state to enable Manual discovery.

- 3. Set the "ManualCameraConnectionConfig" to determine the number of camera channels and current camera speed.
- 4. For each physical connection (total amount defined by "ManualCameraConnectionConfig"), select camera channel using "ManualCameraChannelSelector". Afterwards determine the correct Frame Grabber link, to which the camera channel is attached, using "ManualCameraFGLink" configuration parameter.
- 5. Now camera scan can be initiated using the KYFG_CameraScan() function.

Manual camera detection		
Manual Camera Mode	Off	
Manual Camera Connection Config	1 Link 1.250 Gbps	
Manual Camera Channel Selector	Camera Channel 0	
Manual Camera FG Link	0	

Figure 8 : Manual camera detection configurations in Vision Point App

6.4.4 Silent Discovery Mode

Silent camera discovery process is mainly used for retransmit applications. A silent scan for connected cameras is made without resetting any camera parameters (i.e. no writes are made to the camera. Nevertheless multiple reads are made).

If needed, camera Reset sequence and speed configuration should be performed from external source before a camera scan can be initiated using this mode.

To activate the Silent Discovery Mode the following steps should be taken:

- 1. Set the "SilentDiscovery" value to "On" using the KYFG_SetGrabberValue() function or one of the provided sub-functions.
- 2. Make sure camera is already configured and ready to be connected to. Take under account that no camera Reset or connection reconfiguration commands will be sent.
- 3. Now camera scan can be initiated using the KYFG_CameraScan() function.

6.4.5 Komodo 4R4T system configuration example

This configuration should be used on the Komodo or Predator Frame Grabber when setting up the Komodo4R4T transmit channels towards the Frame Grabber receive channels.

- Insert the Komodo/Predator Frame Grabber and the Komodo4R4T Frame Grabber into a PC and connect the power connector to the Komodo4R4T Frame Grabber device. The Komodo/Predator Frame Grabber and the Komodo4R4T Frame Grabber can be installed in a single or in two different computer devices.
- 2. Connect a CXP camera or the Chameleon Simulator to one or more of the 4 top DIN connectors (channels 0-3) of the Komodo4R4T using 4 DIN cables.
- Connect the same bottom DIN connectors (channels 4-7) of Komodo/R4T to Komodo/Predator Frame Grabber using DIN cables.
- 4. Make sure the Komodo4R4T links connected in the same order (link 0 of the will be retransmitted to link 4). See image below as reference.
- 5. Open Vision Point application and choose the Komodo4R4T board
- Open additional window of Vision Point application and choose the Komodo/Predator Frame Grabber board.
- Activate the "Silent Discovery Mode" for Komodo/Predator Frame Grabber. This option located in Frame Grabber tab -> Device control category -> Silent Discovery Mode - ON
- Scan camera on the Komodo4R4T this will initiate camera correctly to be ready for silent discovery

NOTE: For Chameleon Simulator configuration, one should open Vision Point application and configure the link number for the Simulator to 1-4 links in Camera tab -> CXP category, prior step no. 5

- 9. Scan camera on the Komodo Frame Grabber
- 10. Press start acquisition on Komodo Frame Grabber this won't start the acquisition yet
- 11. Press start acquisition for Komodo4R4T Frame Grabber this will initiate acquisition on both Frame Grabbers

Figure 9 : Silent camera discovery example

7.1 Camera Selector parameter

		Con th Com		Possibl	e values	
Parameter	Description	name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam C</i>	ategory: Extended	StreamFeatures				
Camera	Selects the camera	CameraSelector	Integer	0 - 7		
selector	for which the		(Selector)			
	grabber parameters					
	will relay to					

Table 7 : Camera selector parameters

"CameraSelector" is a grabber related parameter, which is responsible for updating the register set's information, relevant to selected camera.

In order to view or change the value of grabber parameters which are subordinate per camera connection, the KYFG_GetGrabberValue() / KYFG_SetGrabberValue() functions (and their sub-functions) should be called with CAMHANDLE (Connected Camera Handle) instead of FGHANDLE (Frame Grabber Handle).

This will result in "CameraSelector" value change (according to input Connected Camera Handle) in addition to chosen parameter update request.

Alternatively, the "CameraSelector" value might first be selected and then the requested parameter can be changed using the KYFG_GetGrabberValue() / KYFG_SetGrabberValue() functions. This will result in the same manner, in case no other concurrent operation is interrupted between this two function calls.

Nevertheless, it is strongly recommended to pass CAMHANDLE (Connected Camera Handle) to relevant grabber API functions, instead of updating "CameraSelector" and then the parameter value. This is done to prevent multi-threading system issues!

8.1 Transport control

General settings for data transport (commands and stream) between the Frame Grabber and Camera.

		G . G		Poss	ible values	
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam Cate</i>	egory: ExtendedStreamFe	eatures \ TransportLaye	erControl			
Control Packet Data Size	Control commands packets max size	ControlPacketDataSize [CameraSelector]	Integer			Units in bytes. *See remarks
Stream Packet Data Size	Stream packets max size	StreamPacketDataSize [CameraSelector]	Integer			Units in bytes. *See remarks
Image1StreamID	Id of the 1 st stream	Image1StreamID [CameraSelector]	Integer			*See remarks
Gen <i>Cam Cate</i>	egory: ExtendedStreamFe	eatures \ TransferContr	ol			
Camera Transfer Control Mode	Selects the transfer control method over the	TransferControlMode [CameraSelector]	Enumeration	0	Automatic	Allows to choose whether acquisition
	connected camera	[1	UserControlled	commands will be issued to the camera automatically or initiated by user

 Table 8 : Transport Control Parameters

*Setting parameter available only before camera discovery. This will override values retrieved from the camera bootstrap registers.

8.2 Acquisition Stream statistics parameters

The acquisition stream statistics reflect the state of data flow in the Frame Grabber for each connected

camera. These will be available only after a camera has been discovered and opened.

Some parameters represent the quantity and period of received stream packets, while others count errors generated by corrupted data or data overflow.

These parameters may be read on each received frame for each camera stream to extract additional information and detect errors on acquisition path. The acquisition stream statistics are summarized in Table 9.

		Con th Com		Possib	le values	
Parameter	Description	name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam (</i>	Category: ExtendedStreamFe	eatures \ StatisticsAnd	Fests			
CRC Error Counter	CRC Errors Counter for received packets from camera.	CRCErrorCounter [CameraSelector]	Integer			Errors are generated from corrupted data packets
RX Packet Counter	Total number of packets received from the camera	RXPacketCounter [CameraSelector]	Integer			
Drop Packet Counter	Number of packets dropped	DropPacketCounter [CameraSelector]	Integer			

RX Frame Counter	Number of received full image frames from camera	RXFrameCounter [CameraSelector]	Integer		
Drop Frame Counter	Number of image frames dropped due to buffer overflow	DropFrameCounter [CameraSelector]	Integer		
Start of frame acquisition latency	Latency measured from time the first frame byte received by frame grabber till it is requested by user	LatencyFrameStart [CameraSelector]	Integer		In units of microseconds (us)
End of frame acquisition latency	Latency measured from last frame byte received by frame grabber till it is requested by user	LatencyFrameEnd [CameraSelector]	Integer		In units of microseconds (us)
Acquisition frame rate	Actual acquisition frame rate calculated in correspondence to complete frames received by the Frame Grabber.	AcquisitionFps [CameraSelector]	Float		In units of frames per second

Table 9 : Acquisition stream statistics parameters

8.2.1 Frame Acquisition Latency

Latency mechanism provides a criteria to determine time spend processing frame received from camera. Consequently calculates the period passed between the moments the camera has sent a new frame and when user received this data in Host Application.

"LatencyFrameStart" holds time value in units of microseconds (usec) computed between a frame reception start in the Frame Grabber firmware and when user has requested this frame in Host Application.

"LatencyFrameEnd" holds time value in units of microseconds (usec) computed between a complete frame has been received in firmware and when user has requested this frame in Host Application.

KAYA's Frame Grabbers incorporate a hardware based image processing system that is able to deliver maximum frame rate without effecting system performance. The image processing features includes Bayer de-mosaic, color transformation matrix, decimation etc. The structure of the image processing pipeline can be seen in Figure 10.

Figure 10 : Hardware based image processing pipeline

9.1 Image Format Control

The image format control is responsible for configuring some of the image processing features. The image format control can be found in Table 10.

		a a		F	Possible values	
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Can</i>	n Category: Extended	StreamFeatures \ Stati	sticsAndTests			
FIFO Threshold	FIFO threshold, FIFO fill level	FifoThreshold [CameraSelector]	Integer			Threshold quantified in Bytes
Gen <i>Can</i>	n Category: Extended	StreamFeatures \ Imag	geFormatCont	rol		
Transforma	Transformation of	PixelFormat	Enumeration	0x0000	Normal	Conversion is possible
tion Pixel	existing output image	[CameraSelector]		0x0401	RGB8	according to input camera
Format	format to other			0x0402	RGB10	PixelFormat, resolution and HW capabilities
	screeted format			0x0403	RGB12	niw capabilities
				0x0404	RGB14	
				0x0405	RGB16	
				0x0311	BayerGR8	
				0x0321	BayerRG8	
				0x0331	BayerGB8	
				0x0341	BayerBG8	
Debayer Mode	Selects the de-	DebayerMode [CameraSelector]	Enumeration	0x0000	Demosaic3x3	
Widde				0x0002	Demosaic3x2	
				0x0100	DemosaicSoftware	

Segments per Buffer	Number of Lines/Frames to accumulate in a single buffer frame	SegmentsPerBuffer [CameraSelector]	Integer	≥ 1		This feature is mostly used for LineScan cameras. Please refer to section 9.1.3 Segment accumulation for more details.
Decimation Vertical	Reduces image vertical resolution (height) by specified decimation factor	DecimationVertical [CameraSelector]	Integer	≥1		Frame lines amount will be reduced, by skipping them, to 1 / <decimation value=""> Default: 1 (no lines skipped)</decimation>
Frames per Buffer	Number of frames to allocate in case of internal automatic buffer management	FramesPerBuffer [CameraSelector]	Integer			Please refer to section 9.1.4 for more details.
Packed	Select algorithm for	PackedDataMode	Enumeration	0	Unpacked	Data packing output mode.
Data Mode	packing output stream data	[CameraSelector]		1	Packed_RowAligned32	Please refer to section 9.1.6 Data Packing Mode for more details

Table 10 : Image Format control parameters

9.1.1 FIFO Threshold

A threshold on a fill level of on-board memory buffers to decide whenever to drop the frames in case the PCIe bandwidth is not enough to transfer the whole image stream. Larger values will result in larger frame latency but in longer frame recording till the dropping starts. A shorter value will result in lower latency but the frame dropping will start sooner. Use this parameter only if the PCIe bandwidth limits your stream, otherwise leave it at default value.

Threshold default value is 32MB quantified in Bytes. The threshold value depends on hardware capabilities and mounted memory banks.

9.1.2 Vertical decimation

Allows the decimation of complete data lines acquired by the Frame Grabber. The decimation value represents number of lines that will be skipped for each accepted line, thus shrinking the input image vertically. For example to skip every second line set this parameter to 1.

Note that this parameter may be changed while streaming data. Due to that fact, buffer allocation is not affected by this operation, thus Host Application must track changes in received buffer data size!

9.1.3 Segment accumulation

Stream configuration to capture several frames/lines before an event signal is received in software. This feature is mostly used for LineScan cameras – several lines are accumulated before software receives indication signal on new data acquisition. This prevents the software from receiving lines too frequently thus relieving the CPU operation.

"SegmentsPerBuffer" parameter should be set using KYFG_SetGrabberValue() only after a Camera has already been connected and opened.

By default, "SegmentsPerBuffer" value is 1 which means that software indication signal will occur on every frame/line captured.

To modify and achieve the mentioned functionality the following steps should be taken:

- 1. Scan and connect to a chosen Camera.
- "SegmentsPerBuffer" is a grabber parameter subordinate to connected camera. Use the KYFG_SetGrabberValue (or one of its sub-functions) with CAMHANDLE to set the parameter value.

Note: For more information on grabber parameters under "CameraSelector" refer to section 7 Camera Selector.

Note that buffer allocation is directly affected by this operation!

9.1.4 Frames per Buffer

The "FramesPerBuffer" parameter defines the number of frames to be allocated, in case "KYFG_StreamCreateAndAlloc()" function is used with "frames" parameter value as 0. This accommodates in configuration of the number of frames to be allocated for stream, externally of function call.

9.1.5 Bayer de-mosaic

A Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on a square grid of photo sensors. Its particular arrangement of color filters is used in most single-chip digital image sensors used in digital cameras, camcorders, and scanners to create a color image. The Bayer filter has twice green pixels then red or blue ones because human's eye is more sensitive to green light. The filter pattern is 50% green, 25% red and 25% blue, hence is also called RGBG, GRGB, BGGR or RGGB. The example structure of the CFA can be seen in Figure 11.

As each pixel in the array contains only one color plane, the de-mosaicking algorithm should calculate the missing color pixels at each particular position.

To enable the de-mosaic format transformation, set the "PixelFormat" parameter value to "RGB8". Note that buffer allocation is directly affected by this operation!

Two different de-mosaicking algorithms are available dependent on the line scan or area scan sensor.

Figure 11 : Bayer filter example

9.1.5.1 Bilinear de-mosaicking (Area scan)

The bilinear de-mosaicking algorithm performs the color reconstruction for each pixel by interpolation in a 3-by-3 pixel neighborhood. The interpolation kernel differs for even/odd rows/columns and is according to the Figures shown below. The calculations are performed with full 16bits resolution.

G0	B1	G2	$R4' = \frac{(R3 + R5)}{2}$
R3	G4	R5	G4' = G4
G6	B7	G8	$B4' = \frac{B1 + B7}{2}$
BO	G1	B2	R4' = R4
G3	R4	G5	$G4' = \frac{G1 + G3 + G5 + G7}{4}$
B6	G7	B8	$B4' = \frac{B0 + B2 + B6 + B8}{4}$

RO	G1	R2	$R4' = \frac{R0 + R2 + R6 + R8}{4}$
G3	B4	G5	$G4' = \frac{G1 + G3 + G5 + G7}{4}$
R6	G7	R8	B4' = B4
 G0	R1	G2	$R4' = \frac{R1 + R7}{2}$
G0 B3	R1 G4	G2 B5	$R4' = \frac{R1 + R7}{2}$ $G4' = G3$

9.1.5.2 Gradient corrected bilinear de-mosaicking (Line scan)

For line-scan cameras with Bayer filter a special gradient corrected reconstruction is used. The reconstruction forms a single image line out of two lines acquired from camera sensor. The reconstruction uses a gradient corrected interpolation in a 3-by-2 pixel neighborhood. The interpolation kernel differs for even/odd columns and is according to the Figures shown below. The calculations are performed with full 16bits resolution.

R0G1R2G3B4G5	$R1' = \frac{R0 + R2}{2} + G1 - \frac{G3 + G5}{2}$ $G1' = G1$ $B1' = B4$
G0R1G2B3G4B5	$R1' = R1$ $G1' = G4$ $B1' = \frac{B3 + B5}{2} + G4 - \frac{G0 + G2}{2}$

9.1.6 Data Packing Mode

Data packing reduces Unpacked data padding overhead, thus increasing transfer rates without losing data. Different data packing bitnesses layouts are described as follows:

			BC)							В	81							E	32							E	33			
0	1	2	3 4	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
			Р(С))							P((1)							P((2)							Ρ	(3)			
0							7	0							7	0							7	0							7

Figure 12 : Packing of 8 bit pixels

			В	0							В	81							E	32							В	33			
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
				P((0)									P(1)									Р(2	2)						
0									9	0									9	0									9	0	1
			Р(3)								P	(4)									Ρ	(5)						Ρ	(6)	
2			-	-			9	0									9	0									9	0			3
		Р(6)							Ρ(7)									Ρ	(8)							Ρ	(9)		
4					9	0									9	0									9	0)				5
	Р(9)						P(1	10)									Ρ(.	11,)							Р(12)		
6			9	0									9	0									9	0							7
						P(13))								P(1	4)	-								P(2	15))			
8	9	0									9	0									9	0									9

Figure 13 : Packing of 10 bit pixels

Figure 14 : Packing of 12 bit pixels

Figure 16 : Packing of 16 bit pixels

By default stream output will be Unpacked, meaning 10, 12 and 14 bit data will be padded and fit into 2 bytes for each pixel channel.

To achieve data packing, "PackedDataMode" should be configured to "Packed_RowAligned32" mode. This will allow to preserve originally packed data or pack an Unpacked data stream.

The output stream will be modified as such, that every line will be padded at its end, so byte count will be 32bit aligned. Such approach will accommodate in line manipulation and sequencing.

9.2 Color transformation

The color transformation can be used for color correction operators such as adjusting white balance, color transformation, brightness or contrast.

The Color Transformation is a linear operation taking as input a triplet of Components (C0, C1,

C2) for a color pixel (Typically: Rin, Gin, Bin representing a RGB color pixel). This triplet is first multiplied by a 3x3 matrix and then added to an offset triplet.

The equation is given in the following form:

$$\begin{pmatrix} C0out \\ C1out \\ C2out \end{pmatrix} = \begin{pmatrix} Gain00 & Gain01 & Gain02 \\ Gain10 & Gain11 & Gain12 \\ Gain20 & Gain21 & Gain22 \end{pmatrix} \begin{pmatrix} C0in \\ C1in \\ C2in \end{pmatrix} + \begin{pmatrix} Offset0 \\ Offset1 \\ Offset2 \end{pmatrix}$$

And in particular to RGB images:

$$\begin{pmatrix} Rout\\ Gout\\ Bout \end{pmatrix} = \begin{pmatrix} RR & RG & RB\\ GR & GG & GB\\ BR & BG & BB \end{pmatrix} \begin{pmatrix} Rin\\ Gin\\ Bin \end{pmatrix} + \begin{pmatrix} Ro\\ Go\\ Bo \end{pmatrix}$$

For example an RGB to YUV conversion of 8bit data can be achieved by the formula below

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{pmatrix} \begin{pmatrix} Rin \\ Gin \\ Bin \end{pmatrix} + \begin{pmatrix} 0 \\ 128 \\ 128 \end{pmatrix}$$

9.2.1 Monochrome image special case

A special case of image transformation is applicable for monochrome images to achieve gain/offset operator. For this case the gain matrix should be set to diagonal gain and offset should be the same for each component as below.

$$\begin{pmatrix} C0out \\ C1out \\ C2out \end{pmatrix} = \begin{pmatrix} Gain & 0 & 0 \\ 0 & Gain & GB0 \\ 0 & 0 & Gain \end{pmatrix} \begin{pmatrix} C0in \\ C1in \\ C2in \end{pmatrix} + \begin{pmatrix} Offset \\ Offset \\ Offset \end{pmatrix}$$

,

The color transformation parameters are described in Table 11.

		a . a		Poss	ible values	ues		
Parameter	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks		
Gen <i>Cam Categor</i>	y: ExtendedStreamFeatures \ C	ColorTransformationCont	rol					
Color transformation matrix coef RR	Gain factor of R on Rin channel in color transformation matrix	ColorTransformationRR	Float					
Color transformation matrix coef RG	Gain factor of G on Rin channel in color transformation matrix	ColorTransformationRG	Float					
Color transformation matrix coef RB	Gain factor of B on Rin channel in color transformation matrix	ColorTransformationRB	Float					
Color transformation matrix coef R0	Offset factor of R channel in color transformation matrix	ColorTransformationR0	Float					
Color transformation matrix coef GR	Gain factor of R on Gin channel in color transformation matrix	ColorTransformationGR	Float					
Color transformation matrix coef GG	Gain factor of G on Gin channel in color transformation matrix	ColorTransformationGG	Float					
Color transformation matrix coef GB	Gain factor of B on Gin channel in color transformation matrix	ColorTransformationGB	Float					
Color transformation matrix coef G0	Offset factor of G channel in color transformation matrix	ColorTransformationG0	Float					
Color transformation matrix coef BR	Gain factor of R on Bin channel in color transformation matrix	ColorTransformationBR	Float					
Color transformation matrix coef BG	Gain factor of G on Bin channel in color transformation matrix	ColorTransformationBG	Float					
Color transformation matrix coef BB	Gain factor of B on Bin channel in color transformation matrix	ColorTransformationBB	Float					

Color transformation	Offset factor of B channel in	ColorTransformationB0	Float		
matrix coef B0	color transformation matrix				

Table 11 : Color transformation control parameters

KAYA's Frame Grabber boards include a large array of auxiliary signal which can be used to initiate on-board events, transmitted to other devices or rerouted from other signals, such as CoaXPress triggers and GPIO's.

Additionally, these auxiliary signals can be used to communicate with complex devices, such as encoders, strobe controls and drive controls.

The GPIOs can be configured and controlled from the provided API and be set as a trigger sources. The API enables routing of any input to any output as well as to the CoaXPress IO and Trigger lines. The I/O controller is responsible for the following features:

- Triggers
- I/O lines
- Encoders
- Timers

The provided trigger can be divided into two main groups: Camera triggers and Frame Grabber triggers.

10.1 Camera Trigger

The Camera triggers are issued per camera through the camera CoaXPress channels. Camera logic intercepts the signal and performs according to preconfigured camera setting, such as 1 frame transmission for example. A sequence of synchronous or asynchronous signals can be configured to be issued for selected camera. Such configuration can be useful in configuring event controlled image acquisition. The flow of the camera trigger signal can be seen in Figure 17.

Figure 17 : Camera trigger source

Triggers' origin can be selected from number of sources such as encoders, I/O lines and timers.

Additional properties are available for better capturing and processing trigger signals.

*To configure camera trigger mode please refer to camera manufacturer manual.

The structure of the camera trigger is described in Figure 18.

Figure	18	:	Camera	trigger	structure
--------	----	---	--------	---------	-----------

The parameters of the camer	a trigger are	described in	Table	12
-----------------------------	---------------	--------------	-------	----

		Genzi>Cam		Pos	sible values				
Output	Description	name	Туре	Value	Gen <i>Cam name</i>	Remarks			
Gen <i>Cam Ca</i>	tegory: Extended	StreamFeatures \ CameraT	riggerContro	1					
Camera Trigger	Controls if the	CameraTriggerMode	Enumeration	0	Off				
Mode	trigger is active	[CameraSelector]		1	On				
Camera Trigger Software	Generates an internal trigger	CameraTriggerSoftware [CameraSelector]	Command	1 - Activate		To issue command "CameraTriggerSource" must be set to "Software"			
Camera Trigger	Activation mode	CameraTriggerActivation	Enumeration	0	RisingEdge	Inv means inverted. Only			
Activation	of the trigger in	[CameraSelector]		1	FallingEdge	Selected edge CXP			
	respect to the input.			2	AnyEdge	packet will be issued to			
				3	RisingEdgeInv	the camera.			
				4	FallingEdgeInv				
				5	AnyEdgeInv				
Camera Trigger Source	Source I/O	CameraTriggerSource [CameraSelector]	Enumeration			See section 10.7 Trigger Source options			
Camera Trigger Delay	Delay before issuing trigger	CameraTriggerDelay [CameraSelector]	Integer			In units of microseconds (us)			
Camera Trigger Filter	Filter for frame grabber trigger	CameraTriggerFilter [CameraSelector]	Float			In units of microseconds (us) 8ns resolution using fraction value			
Camera Trigger	Enables event	CameraTriggerEventEnable	Enumeration	0	Disable	Will generate software			
Event Enable	generation for camera trigger	[CameraSelector]		1	Enable	even for any trigger			

Table 12 : Camera Trigger parameters

10.1.1 Camera Trigger activation mode

The trigger activation mode configures the capture criteria of signal state. Default value is Rising Edge, which will issue a trigger on signal rising edge event. The different modes functionality is as follows:

1. Any Edge:

A rising edge of the selected trigger source generates rising edge trigger packets, and a falling edge generates falling edge packets. This allows e.g. camera exposure to be controlled by the time between the rising and falling edges, as well as one of the edges providing the trigger.

2. Rising Edge:

A rising edge of the selected trigger source generates rising edge trigger packets, and a falling edge is ignored. This allows a higher trigger rate, but does not allow exposure control independent from the trigger rate.

3. Falling Edge:

A falling edge of the selected trigger source generates falling edge trigger packets, and a rising edge is ignored.

4. Inverted:

This mode can be applied to any of the above, and results in a rising edge generating a falling edge trigger packet, and a falling edge to generate a rising edge trigger packet.

10.1.2 Camera Trigger signals filter

The filter of the trigger signals acts as a de-bouncing mechanism for better handling generated noise. By default the filter is disabled with the value of 0. The signal filter resolution can be set at 8ns intervals for high resolution functionality.

If the trigger filter is set to a larger value than the width of the trigger pulse, then the pulse will be filtered out and no trigger will occur.

Available interface in API provides input in microsecond; nevertheless, to achieve higher resolution, relevant fraction values should be entered after the decimal point.

10.1.3 Camera Trigger Delay

The trigger delay is a mechanism for postponing the incoming signal for a specified number of microseconds. As a result, trigger will be issued after specified time delay to overcome known system latency. To disable, value 0 should be set.

10.1.4 Camera Trigger Event

Camera trigger event may be enabled for selected camera. This will generate event callback whenever such trigger is generated in hardware.

Steps to enable and use such event mechanism are as follows:

 "CameraTriggerEventEnable" is a grabber parameter subordinate to connected camera. Use the KYFG_SetGrabberValue (or one of its sub-functions) with CAMHANDLE to set the parameter value to "Enable".

Note: For more information on grabber parameters under "CameraSelector" refer to section 7 Camera Selector.

- Register a callback function for Auxiliary events using KYFG_AuxDataCallbackRegister() function.
- 3. To extract the data attached to such event KYFG_BufferGetAux() function with KYFG_IO_AUX_DATA structure should be used.

10.1.5 Steps to properly configure Camera Triggers

 "CameraTriggerMode" is a grabber parameter subordinate to connected camera. Use the KYFG_SetGrabberValue (or one of its sub-functions) with CAMHANDLE to set the parameter value to "On".

Note: For more information on grabber parameters under "CameraSelector" refer to section 7 Camera Selector.

- 2. The trigger source should be selected according to provided sources and available card GPIO. Only one source can be active, for each camera, at any time.
- The Trigger Filter resolution ("CameraTriggerDelay"), Activation Mode ("CameraTriggerActivation") and Trigger Delay ("CameraTriggerDelay") parameters should be configured according to desired output.

- 4. In some cases, the trigger sources should also be configured via provided API before trigger configuration is complete. (e.g if "KY_TIMER_ACTIVE_0" is to be selected as Camera Trigger source, then "Timer0" should first be configured as described in Timer Block configuration in this chapter).
- 5. Configure the camera to be in trigger mode, in order to allow triggered control through the Frame Grabber.

*To configure camera trigger mode please refer to camera manufacturer manual.

10.2 Acquisition (Frame Grabber) Triggers

The Acquisition (Frame Grabber) triggers are stream oriented; these are issued through internal logic while the system is in data acquisition mode. When configured in this mode, the camera will always stream the images, while frame grabber will select which images it should receive based on Acquisition trigger. The flow of the trigger signal in this mode is described in Figure 19.

Figure 19 : Acquisition stream trigger source

Internal or external signals/events can act as a source for these triggers. Certain cameras can also be configured to issue triggers for the Frame Grabber over the relevant CoaXPress channel.

In some cases both Camera triggers and Frame Grabber triggers can be used simultaneously to achieve desired effect.

Also, a signal can be configured to perform as a trigger for other signals which consequently will be the trigger for Frame Grabber or Camera.

The structure of the Acquisition trigger mechanism is described in Figure 20.

Figure 20 : Acquisition trigger structure

The	parameters	of the	acquisition	triggers	are	described	in	Table	13.
			1	00					

		Genzi>Cam		Possibl	e values	
Output	Description	name	Туре	Value	Gen <i>Ca m</i>	Remarks
Gen <i>Cam Cate</i>	egory: FrameGrabbe	erIOControl \ Trig	gerControl			
Trigger	Controls if the	TriggerMode	Enumeration	0	Off	
Mode	trigger is active	[CameraSelector]		1	On	
Trigger Software	Generates an internal trigger	TriggerSoftware [CameraSelector]	Command	1 - Activate		To issue command "TriggerSource" must be set to "Software"
Trigger	Activation mode of	TriggerActivation	Enumeration	0	RisingEdge	
Activation	the trigger to issue	[CameraSelector]		1	FallingEdge	
	trigger			2	AnyEdge	
				3	LevelHigh	
				4	LevelLow	
Trigger Source	Source I/O	TriggerSource [CameraSelector]	Enumeration			See section 10.7 Trigger Source options
Trigger Delay	Delay before issuing rigger	TriggerDelay [CameraSelector]	Integer			In units of microseconds (us)

Trigger Filter	Filter for frame grabber trigger	TriggerFilter [CameraSelector]	Float			In units of microseconds (us) 8ns resolution using fraction value
Trigger Event	Select the condition	TriggerEventMode	Enumeration	0	Disabled	
Mode	when to generate	[CameraSelector]		1	RisingEdge	
	software event for			2	FallingEdge	
	acquisition trigger			3	AnyEdge	

Table 13 : Acquisition Triggers parameters

10.2.1 Trigger activation mode

The trigger activation mode configures the capture criteria of signal state. Default value is Rising Edge, which will trigger a frame on signal rising edge event. The different modes functionality is as follows:

1. Any Edge:

The frames will be acquired both on rising and falling edges of the trigger source.

2. Rising Edge:

The frames will be acquired only on rising edge of the trigger source. Falling edge of the source is ignored.

3. Falling Edge:

The frames will be acquired only on falling edge of the trigger source. Rising edge of the source is ignored.

4. Level High:

High signal level enables a continuous image acquisition, Low signal level will halt the trigger generation.

5. Level Low:

Low signal level enables a continuous image acquisition, High signal level will halt the trigger generation.

10.2.2 Trigger signals filter

The filter of the trigger signals acts as a de-bouncing mechanism for better noise immunity. By default the filter is disabled with the value of 0. The signal filter resolution can be set at 8ns intervals for high resolution functionality.

If the trigger filter is set to a larger value than the width of the trigger pulse, then the pulse will be filtered out and no trigger will occur.

Available interface in API provides input in microsecond; nevertheless, to achieve higher resolution, relevant fraction values should be entered after the decimal point.

10.2.3 Trigger Delay

The trigger delay is a mechanism for postponing the incoming signal for a specified number of microseconds. As a result, trigger will be issued after specified time delay to overcome known system latency or set trigger generation period. To disable, value 0 should be set.

10.2.4 Trigger Event

Acquisition trigger event may be enabled for selected camera. This will generate event callback whenever such trigger is generated in hardware.

Steps to enable and use such event mechanism are as follows:

 "TriggerEventMode" is a grabber parameter subordinate to connected camera. Use the KYFG_SetGrabberValue (or one of its sub-functions) with CAMHANDLE to set the parameter value to "RisingEdge" for example.

Note: For more information on grabber parameters under "CameraSelector" refer to section 7 Camera Selector.

- Register a callback function for Auxiliary events using KYFG_AuxDataCallbackRegister() function.
- 3. To extract the data attached to such event KYFG_BufferGetAux()function with KYFG_IO_AUX_DATA structure should be used.

10.2.5 Steps to properly configure Frame Grabber Triggers

 "TriggerMode" is a grabber parameter subordinate to connected camera. Use the KYFG_SetGrabberValue (or one of its sub-functions) with CAMHANDLE to set the parameter value to "On".

Note: For more information on grabber parameters under "CameraSelector" refer to section 7 Camera Selector.

The trigger source should be selected according to provided sources and available card GPIO.
 Only one source can be active, for each camera, at any time.

- 3. The Trigger Filter resolution ("TriggerFilter"), Activation Mode ("TriggerActivation") and Trigger Delay ("TriggerDelay") parameters should be configured according to desired output.
- 4. In some cases, the trigger sources should also be configured via provided API before trigger configuration is complete. (e.g if "KY_TIMER_ACTIVE_0" is to be selected as Camera Trigger source, then "Timer0" should first be configured as described in Timer Block configuration in this chapter).
- 5. After all configurations are complete, start the acquisition. At this point acquisition mechanism will wait for trigger, and Frame Grabber will acquire data upon trigger arrival.

				Possit	ole values	
Parameter	Description	Gen<1>Cam name	Type Val		Gen <i>Cam name</i>	Remarks
Gen <i>Cam Ca</i>	ategory: Frame(GrabberIOControl \ Enc	oderControl			
Encoder Selector		EncoderSelector	Enumeration (Selector)			See Table 15
Encoder	Selects Encoder	EncoderOutputMode	Enumeration	0	Disabled	
Output Mode	Output signal	[EncoderSelector]		1	Position	
	Denavior			2	Anystep	
				3	Stepforward	
				4	Stepbackward	
Encoder Inverter	Controls the signal inversion	EncoderInverter [EncoderSelector]	Boolean	0 - false 1 - true		
Encoder Position	Encoder value in step counts	EncoderValue [EncoderSelector]	Integer			Writing this register will pre- set the count
Encoder Position Trigger	The value to compare with the Encoder Position Value	EncoderPositionTrigger [EncoderSelector]	Integer			Only used if "EncoderOutputMode" is set to "Position"
Encoder Filter	Filter for encoder signals	EncoderFilter [EncoderSelector]	Float			In units of microseconds (us) 8ns resolution using fraction value
Encoder Reset	Software reset for encoder	EncoderReset [EncoderSelector]	Command	1 - Activate		
Encoder Value at Reset	Last position counter before encoder rest	EncoderValueAtReset [EncoderSelector]	Integer			
Encode Reset	Activation mode	EncoderResetActivation	Enumeration	0	RisingEdge	
Activation	of encoder reset	[EncoderSelector]		1	FallingEdge	
	signal			2	AnyEdge	
				3	LevelLow	
Encoder Reset Source	Source I/O for encoder reset	EncoderResetSource [EncoderSelector]	Enumeration	7		See section 10.7 Trigger Source options
Encoder A Source	Source I/O A	EncoderASource [EncoderSelector]	Enumeration			See section 10.7 Trigger Source options
Encoder B Source	Source I/O B	EncoderBSource [EncoderSelector]	Enumeration			See section 10.7 Trigger Source options

10.3 Encoder trigger functionality

Encoder Event	Enables event	EncoderEventEnable	Enumeration	0	Disable
Enable	generation for	[EncoderSelector]		1	Enable
	encoder				

Table 14 : Available configurations for Encoders

Value	Output	Gen <i>Cam parameter name</i>
0	Encoder 0	Encoder0
1	Encoder 1	Encoder1
2	Encoder 2	Encoder2
3	Encoder 3	Encoder3

Table 15 : Encoder selection options

Configurable encoder triggers for both Shaft encoders and Quadrature Shaft encoders. Usually used to overcome image capture synchronization issues, by adjusting and controlling image acquisition using encoder physical steps rather than timed capture.

While simple shaft encoders have one output, generating pulses according to step resolution, a quadrature shaft encoder has two outputs, called "A" and "B", which are 90° out of phase. This allows interpreting the output of both lines to determine the direction of the encoder.

Figure 22 : Encoder channels

10.3.1 Encoder trigger filter

The filter of the trigger signals acts as a de-bouncing mechanism for better handling generated noise. By default the filter is disabled with the value of 0. The signal filter resolution can be set at 8ns intervals for high resolution functionality.

If the trigger filter is set to a larger value than the width of the trigger pulse, then the pulse will be filtered out and no trigger will occur.

Available interface in API provides input in microsecond; nevertheless, to achieve higher resolution, relevant fraction values should be entered after the decimal point.

10.3.2 Encoder position and position trigger

Encoder Position defines the current encoder position while the Position Trigger defines the value which encoder step count should reach to issue the trigger. Writing to this registers will pre-set the count. The encoder step counter depends on encoder resolution and is not bound by time limit.

10.3.3 Encoder output mode

The encoder activation mode configures the capture criteria of trigger generation, according to encoder position and direction. Encoder direction output can be inverted, to define a downwards stepper. The different modes functionality is as follows:

1. Disabled:

Signal pulse generation is disabled.

2. Position:

Signal pulse generation will occur when value of Encoder Position will match the value of Position Trigger.

3. Any step:

Signal pulse generation on every encoder step, regardless of encoder direction.

4. Step forward:

Signal pulse generation every forward encoder step, backward step is ignored.

5. Step backward:

Signal pulse generation every backward encoder step, forward step is ignored.

10.3.4 Encoder Event

Encode event may be enabled for selected encoder. This will generate event callback whenever such trigger is generated in hardware.

Steps to enable and use such event mechanism are as follows:

- Select encoder by setting the "EncoderSelector" parameter and enable "EncoderEventEnable" for selected encoder
- Register a callback function for Auxiliary events using KYFG_AuxDataCallbackRegister() function.
- 3. To extract the data attached to such event KYFG_BufferGetAux() function with KYFG_IO_AUX_DATA structure should be used.

10.4 Timer trigger signals

Parameter Description Gen <a>Cam Type Concis Com	Possible val	
name Value Generacian name	iption Gen<1>Cam Type Value Ge	Cam Remarks ie

Gen <i>Cam Category: FrameGrabberIOControl \ TimerControl</i>						
Timer Selector		TimerSelector	Enumeration (Selector)			See Table 17
Timer Delay	Duration of delay to apply at the reception of a trigger before starting the Timer	TimerDelay [TimerSelector]	Float			In units of microseconds (us)
Timer Duration	Duration of the Timer pulse	TimerDuration [TimerSelector]	Float			In units of microseconds (us)
Timer Output Inverter	Controls the inversion of the timer output signal	TimerOutputInverter [TimerSelector]	Boolean	0 - false 1 - true		
Timer Trigger Software	Generates an internal trigger	TimerTriggerSoftwar e [TimerSelector]	Command	1 - Activate		To issue this command, the "TimerTriggerSource" parameter must be set to "Software"
Timer Reset	Software reset of the selected timer	TimerReset [TimerSelector]	Command	1 - Activate		
Timer	Activation mode of the	TimerActivation	Enumeration	0	RisingEdge	-
Activation	counter	[11merSelector]		1 2	FallingEdge AnvEdge	
				3	LevelHigh	-
				4	LevelLow	-
Timer Trigger Source	Source I/O	TimerTriggerSource [TimerSelector]	Enumeration			See section 10.7 Trigger Source options
Timer Event	Select the condition	TimerEventMode	Enumeration	0	Disabled	_
Mode	when the software event will be generated	[TimerSelector]		1	RisingEdge	-
	for selected timer			2	AnvEdge	4

Table 16 : Available configurations for Timers

Value	Output	Gen <i>Cam parameter name</i>
0	Timer Active 0	Timer0
1	Timer Active 1	Timer1
2	Timer Active 2	Timer2
3	Timer Active 3	Timer3
4	Timer Active 4	Timer4
5	Timer Active 5	Timer5
6	Timer Active 6	Timer6
7	Timer Active 7	Timer7

Table 17 : Timer selection options

Configure am internal timer for timed trigger generation. Incorporate selection of signal edge capture mode, timer signal delay and duration and inverter for timer signal.

Figure 23 : Timer triggers structure

10.4.1 Timer activation mode

The trigger activation mode configures the capture criteria of signal state. Default value is Rising Edge, which will issue a trigger on signal rising edge event. The different modes functionality is as follows:

1. Any Edge:

Any edge of the selected trigger source signal will increment 1 timer count (Duration + Delay time).

2. Rising Edge:

A rising edge of the selected trigger source will increment 1 timer count (Duration + Delay time), and a falling edge is ignored.

3. Falling Edge:

A falling edge of the selected trigger source will increment 1 timer count (Duration + Delay time), and a rising edge is ignored.

4. Level High:

High signal level enables a continuous timer operation. Low signal level will halt the timer.

5. Level Low:

Low signal level enables a continuous timer operation. High signal level will halt the timer.

10.4.2 Timer delay, duration and signal inversion

Input value of delay, duration and inversion will determine the timer signal behavior as a rule for timer tick count. Duration will determine the ON position of the timer signal, while delay will determine the OFF position of the signal. The output inverter is responsible for flipping the signal level of duration and delay values.

Figure 24 : Output inverters

Timers' counters are in 8ns intervals for high resolution functionality.

Available interface in API provides input in microsecond; nevertheless, to achieve higher resolution, relevant fraction values should be entered after the decimal point.

10.4.3 Timer Event

Timer trigger event may be enabled for selected timer. This will generate event callback whenever such trigger is generated in hardware.

Steps to enable and use such event mechanism are as follows:

- 1. Select timer by setting the "TimerSelector" parameter and select signal capture mode using "TimerEventMode" for selected timer.
- 2. Register a callback function for Auxiliary events using KYFG_AuxDataCallbackRegister() function.
- 3. To extract the data attached to such event KYFG_BufferGetAux() function with KYFG_IO_AUX_DATA structure should be used.

10.5 Auxiliary GPIO block

		a . a		Pos	sible values	
Output	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam Ca</i>	tegory: FrameGrabber	IOControl \ Dig	italIOControl			
Line Selector		LineSelector	Enumeration (Selector)			See Table 19
Line Mode	Direction of IO pin	LineMode	Enumeration	0	Input	
		[LineSelector]		1	Output	
Line Invertor	Invert the output	LineInverter	Boolean	0 - false		
		[LineSelector]		1 - true		
Line Status	Report state of the line	LineStatus	Boolean	0 - false		
		[LineSelector]		1 - true		
Line Format	Selects the line	LineFormat	Enumeration	0	NoConnect	_
	electrical format	[LineSelector]		1	TriState	_
				2	TTL	
				3	LVDS	
				4	RS422	_
				5	OptoCoupled	_
				6	LVTTL	
				7	NonAvailable	
Line Source	Source I/O	LineSource [LineSelector]	Enumeration			See section 10.7 Trigger Source options
Line Event	Selects condition when	LineEventMode	Enumeration	0	Disabled	
Mode	event for selected IO	[LineSelector]		1	RisingEdge	_
	hy software			2	FallingEdge	
	by software			3	AnyEdge	
Line Status for all inputs	Status of all IO lines	LineStatusAll	Integer			Value for all lines, not effected by line selector value

Table	18 :	: Available	configurations	for	Input I/O
			U		1

Value	Output	Gen <i>Cam parameter name</i>
0	OptoCoupled Input 0	KY_OPTO_IN_0
1	OptoCoupled Input 1	KY_OPTO_IN_1
2	OptoCoupled Input 2	KY_OPTO_IN_2
3	OptoCoupled Input 3	KY_OPTO_IN_3
4	OptoCoupled Input 4	KY_OPTO_IN_4
5	OptoCoupled Input 5	KY_OPTO_IN_5
6	OptoCoupled Input 6	KY_OPTO_IN_6
7	OptoCoupled Input 7	KY_OPTO_IN_7
8	LVDS Input 0	KY_LVDS_IN_0
9	LVDS Input 1	KY_LVDS_IN_1
10	LVDS Input 2	KY_LVDS_IN_2
11	LVDS Input 3	KY_LVDS_IN_3
12	TTL 0	KY_TTL_0
13	TTL 1	KY_TTL_1
14	TTL 2	KY_TTL_2
15	TTL 3	KY_TTL_3

16	TTL 4	KY_TTL_4
17	TTL 5	KY_TTL_5
18	TTL 6	KY_TTL_6
19	TTL 7	KY_TTL_7
20	LVTTL 0	KY_LVTTL_0
21	LVTTL 1	KY_LVTTL_1
22	LVTTL 2	KY_LVTTL_2
23	LVTTL 3	KY_LVTTL_3
24	LVTTL 4	KY_LVTTL_4
25	LVTTL 5	KY_LVTTL_5
26	LVTTL 6	KY_LVTTL_6
27	LVTTL 7	KY_LVTTL_7
28	OptoCoupled Output 0	KY_OPTO_OUT_0
29	OptoCoupled Output 1	KY_OPTO_OUT_1
30	OptoCoupled Output 2	KY_OPTO_OUT_2
31	OptoCoupled Output 3	KY_OPTO_OUT_3
32	OptoCoupled Output 4	KY_OPTO_OUT_4
33	OptoCoupled Output 5	KY_OPTO_OUT_5
34	OptoCoupled Output 6	KY_OPTO_OUT_6
35	OptoCoupled Output 7	KY_OPTO_OUT_7
36	LVDS Output 0	KY_LVDS_OUT_0
37	LVDS Output 1	KY_LVDS_OUT_1
38	LVDS Output 2	KY_LVDS_OUT_2
39	LVDS Output 3	KY_LVDS_OUT_3

Table 19 : Line selection options

Large array of GPIO is available for configuring trigger source from external signal generators, such as TTL, LVDS, LVTTL and OptoCoupled.

The auxiliary GPIO signals can be used to initiate on-board events, transmitted to other devices or rerouted from other signals, such as CoaXPress triggers and other GPIOs.

The GPIOs can be configured from the API and be set as a trigger sources. The API enables routing of any input to any output as well as to the CoaXPress IO and Trigger lines.

For complete GPIO pinout, see relevant Frame Grabber specification datasheet.

Figure 25 : Digital I/O Line structure

10.5.1 Digital I/O Event

Digital I/O event may be enabled for selected I/O line. This will generate event callback whenever such trigger is generated in hardware.

Steps to enable and use such event mechanism are as follows:

- 1. Select I/O line by setting the "LineSelector" parameter and select signal capture mode using "TimerEventMode" for selected I/O Line.
- Register a callback function for Auxiliary events using KYFG_AuxDataCallbackRegister() function.
- 3. To extract the data attached to such event KYFG_BufferGetAux() function with KYFG_IO_AUX_DATA structure should be used.

		a : a		Possible values		
Output	Description	Gen<1>Cam name	Туре	Value	Gen <i>Cam name</i>	Remarks
Gen <i>Cam Category: FrameGrabberIOControl \ DigitalIOControl</i>						
User Output Selector		UserOutputSelector	Enumeration (Selector)			See Table 21
User Output Value	Value of User Output register	UserOutputValue [UserOutputSelector]	Boolean	0 - false 1 - true		
User Output Value All Mask	Set value of all User Output bits	UserOutputValueAll	Integer			Value for all outputs, not effected by selection value
User Output Value All Mask	Bitmask to determine all active outputs	UserOutputValueAllMask	Integer			Value for all outputs, not effected by selection value

10.6 User Output block

Table 20 : Available configurations for User outputs

Value	Output	Gen <i>Cam parameter name</i>
0	User Output 0	UserOutput0
1	User Output 1	UserOutput1
2	User Output 2	UserOutput2
3	User Output 3	UserOutput3
4	User Output 4	UserOutput4
5	User Output 5	UserOutput5
6	User Output 6	UserOutput6
7	User Output 7	UserOutput7

Table 21 : User Output selection options

Software trigger source which can be controlled by user to generate on-board events. User Output can be configured and controlled using provided API. Several User Outputs has been reserved for the purpose of trigger source, their status can be changed in two ways:

- 1. Individually setting of "UserOutputValue" parameter value for selected User Output.
- Group value configuration configuring value for a group of User Outputs using a combination of "UserOutputValueAll", which is responsible for set value, and "UserOutputValueAllMask", which represents bitmask of User Outputs that will be affected.

10.7 Trigger Source options

Enumerated below are available trigger sources for each trigger component. This is subject to device hardware, firmware and software capabilities.

		Gen <i>Cam parameter</i>					Camera
Value	Source	name	I/O	Timer	Trigger	Encoder	Trigger
0	Disabled	KY_DISABLED	\checkmark	1	1	1	1
1	OptoCoupled Input 0	KY_OPTO_IN_0	1	1	1	1	1
2	OptoCoupled Input 1	KY_OPTO_IN_1	\checkmark	1	\checkmark	1	1
3	OptoCoupled Input 2	KY_OPTO_IN_2	1	\checkmark	1	1	1
4	OptoCoupled Input 3	KY_OPTO_IN_3	1	1	1	1	1
5	OptoCoupled Input 4	KY_OPTO_IN_4	\checkmark	1	\checkmark	1	1
6	OptoCoupled Input 5	KY_OPTO_IN_5	1	1	\checkmark	1	1
7	OptoCoupled Input 6	KY_OPTO_IN_6	1	1	\checkmark	1	\checkmark
8	OptoCoupled Input 7	KY_OPTO_IN_7	1	1	\checkmark	1	1
9	LVDS Input 0	KY_LVDS_IN_0	1	1	\checkmark	1	1
10	LVDS Input 1	KY_LVDS_IN_1	1	1	\checkmark	1	1
11	LVDS Input 2	KY_LVDS_IN_2	1	1	\checkmark	1	1
12	LVDS Input 3	KY_LVDS_IN_3	1	1	\checkmark	1	1
13	TTL 0	KY_TTL_0	1	1	\checkmark	1	1
14	TTL 1	KY_TTL_1	1	1	\checkmark	1	1
15	TTL 2	KY_TTL_2	1	1	1	1	1
16	TTL 3	KY_TTL_3	1	1	1	1	1
17	TTL 4	KY_TTL_4	\checkmark	\checkmark	\checkmark	1	1
18	TTL 5	KY_TTL_5	\checkmark	\checkmark	\checkmark	1	1
19	TTL 6	KY_TTL_6	\checkmark	\checkmark	\checkmark	1	1
20	TTL 7	KY_TTL_7	1	1	1	1	1
21	LVTTL 0	KY_LVTTL_0	\checkmark	\checkmark	\checkmark	1	1
22	LVTTL 1	KY_LVTTL_1	\checkmark	\checkmark	\checkmark	1	1
23	LVTTL 2	KY_LVTTL_2	1	1	1	1	1
24	LVTTL 3	KY_LVTTL_3	\checkmark	1	1	1	1
25	LVTTL 4	KY_LVTTL_4	\checkmark	\checkmark	\checkmark	1	1
26	LVTTL 5	KY_LVTTL_5	1	1	1	1	1
27	LVTTL 6	KY_LVTTL_6	\checkmark	1	1	1	1
28	LVTTL 7	KY_LVTTL_7	1	1	1	1	1
29	OptoCoupled Output 0						
30	OptoCoupled Output 1						
31	OptoCoupled Output 2						
32	OptoCoupled Output 3						
33	OptoCoupled Output 4						
34	OptoCoupled Output 5						
35	OptoCoupled Output 6						
36	OptoCoupled Output 7						
37	LVDS Output 0						
38	LVDS Output 1						
39	LVDS Output 2						
40	LVDS Output 3						
41	Camera Trigger	KY_CAM_TRIG			\checkmark		
42	Continuous	KY_CONTINUOUS		1			
43	Software	KY_SOFTWARE		1	1		1
44	Encoder 0	KY_ENCODER_0		1	1		1
45	Encoder 1	KY_ENCODER_1		1	\checkmark		1
46	Encoder 2	KY_ENCODER_2		1	\checkmark		1
47	Encoder 3	KY_ENCODER_3		\checkmark	1		1
48	Timer0Active	KY_TIMER_ACTIVE_0	\checkmark	\checkmark	\checkmark		1
49	Timer1Active	KY_TIMER_ACTIVE_1	\checkmark	\checkmark	\checkmark		 Image: A set of the set of the
50	Timer2Active	KY_TIMER_ACTIVE_2	1	1	\checkmark		 ✓

51	Timer3Active	KY_TIMER_ACTIVE_3	1	1		1
52	Timer4Active	KY_TIMER_ACTIVE_4	<i>.</i>	<i>\</i>	✓ ✓	<i>✓</i>
53	Timer5Active	KY_TIMER_ACTIVE_5	<i>\</i>	1	\checkmark	1
54	Timer6Active	KY_TIMER_ACTIVE_6	✓	1	✓	1
55	Timer7Active	KY_TIMER_ACTIVE_7	✓	1	✓	1
56	User Output 0	KY_USER_OUT_0	✓			
57	User Output 1	KY_USER_OUT_1	✓			
58	User Output 2	KY_USER_OUT_2	\			
59	User Output 3	KY_USER_OUT_3	✓			
60	User Output 4	KY_USER_OUT_4	✓			
61	User Output 5	KY_USER_OUT_5	\			
62	User Output 6	KY_USER_OUT_6	\			
63	User Output 7	KY_USER_OUT_7	✓			

Table 22 : Frame grabber I/O source

10.8 Trigger Controls Layout in Vision Point App

Camera Trigger Control		
Camera Trigger Mode	Off	
Camera Trigger Activation	Rising Edge	
Camera Trigger Source	Disabled	
Camera Trigger Delay	0	
Camera Trigger Filter	0.000000	
Camera Trigger Software	Execute	
Camera Trigger Event Enable	Disable	

Figure 26 : Camera Trigger Layout in Vision Point App

Digital I/O Control		
Line Selector	OptoCoupled Input 0	
Line Mode	Input	
Line Inverter	False	
Line Source	Disabled	
Line Status	False	
Line Format	No Connect	
Line Event Mode	Disabled	
Line Status All	0x0	
 User Output Selector 	User Output 0	
User Output Value	False	
User Output Value All	0x0	
User Output Value All Mask	0x0	
 Trigger Control 		
Trigger Mode	Off	
Trigger Activation	Rising Edge	
Trigger Source	Disabled	
Trigger Delay	0	
Trigger Filter	0.000000	
Trigger Software	Execute	
Trigger Event Mode	Disabled	
 Timer Control 		
 Timer Selector 	Timer 0	
Timer Delay	0.000000	
Timer Duration	0.000000	
Timer Activation	Rising Edge	
Timer Output Inverter	False	
Timer Trigger Source	Disabled	
Timer Trigger Software	Execute	
Timer Reset	Execute	
Timer Event Mode	Disabled	
Encoder Control		
 Encoder Selector 	Encoder 0	
Encoder Output Mode	Disabled	
Encoder Inverter	False	
Encoder A Source	Disabled	
Encoder B Source	Disabled	
Encoder Position	0	
Encoder Position Trigger	0	
Encoder Filter	0.000000	
Encoder Reset Source	Disabled	
Encoder Reset Activation	Rising Edge	
Encoder Reset	Execute	
Encoder Value at Reset	0	
Encoder Event Enable	Disable	

Figure 27 : Trigger Layout in Vision Point App

11 Multiple Frame Grabbers

Synchronization

In order to synchronize multiple Frame Grabbers together the following should be done:

- 1. The Frame Grabbers must be connected together with a harness.
- 2. One of the Frame Grabber will be defined as master, and configured to provide timer pulses to other slave Frame Grabbers.
- 3. Connected cameras should be set to Triggered mode (camera vendor dependent).
- 4. Camera Trigger parameters should be enabled in all Frame Grabbers to provide triggers to cameras.

In order to achieve a synchronized triggering to all the cameras a sync harness is connected to J1 of all the Frame Grabbers.

The wiring diagram of the harness can be seen in the diagram below.

Figure 28 : Sync harness wiring

One of the Frame Grabbers operates as master and others as slaves for camera triggering.

The example below shows configuration of three Frame Grabbers for 90Hz frame rate. If other frame rates are needed, the "TimerDelay" and "TimerDuration" values should be adjusted accordingly.

The configuration sequence includes the following steps:

- 1. Configure timer to generate 90Hz waveform on master card. Please see section 10.4 for timer description.
- Configure trigger path for each camera by calling KYFG_SetGrabberValueEnum_ByValueName() (for parameters of Enumeration type) and

KYFG_SetGrabberValueFloat() (for parameters of Float type) with camera handle. Please see section 10.1 for detailed description.

3. Configure GPIO to synchronize between different boards. Please see section 10.5 for detailed description.

The frame grabbers in the control PC should be configured in the following sequence:

Gen <i>Cam Name</i>	Туре	Card 0 Value (Master)	Card 1 Value	Card 2 Value	Comment
TimerSelector	Enumeration	"Timer0"	NA	NA	
TimerDelay	Float	5555.55	NA	NA	Half cycle
					for 90Hz
TimerDuration	Float	5555.55	NA	NA	Half cycle
					for 90Hz
TimerTriggerSource	Enumeration	"KY_CONTINUOUS"	NA	NA	
CameraTriggerMode	Enumeration	"On"	"On"	"On"	For each
					camera
CameraTriggerActivation	Enumeration	"AnyEdge"	"AnyEdge"	"AnyEdge"	For each
					camera
CameraTriggerSource	Enumeration	"KY_TTL_0"	"KY_TTL_0"	"KY_TTL_0"	For each
					camera
LineSelector	Enumeration	"KY_TTL_0"	"KY_TTL_0"	"KY_TTL_0"	
LineMode	Enumeration	"Output"	"Input"	"Input"	
LineSource	Enumeration	"KY_TIMER_ACTIVE_0"	"KY_DISABLED"	"KY_DISABLED"	

Table 23 : Frame Grabber required settings

12.1 CoaXPress connectivity test

Configuration parameters of Connection Test, using dedicated test pattern packets produced by a sequence generator. As described in JIIA CXP-001-2013 (CoaXPress Standard) document section 8.7 - "Connection Test".

		GenzisCam		Pos	sible values				
Parameter	Description	name	Туре	Value	Gen <i>Cam name</i>	Remarks			
Gen <i>Can</i>	Gen <i>Cam Category: CoaXPress</i>								
CoaXPress connection selector	Selects the CoaXPress physical connection to control	CxpConnectionSelector	Integer (Selector)			FG_MAX_VALUE-1			
Connection	Test communication	CxpConnectionTestMode	Enumeration	0	Off	Mode1 will enable			
test mode	cabling between devices	[CxpConnectionSelector]		1	Mode1	test packets from Host to Device			
Connection Test Error Count	Camera CRC Error Counter. Number of CRC errors generated from corrupted data packets	CxpConnectionTestErrorCount [CxpConnectionSelector]	Integer						
Connection Test RX packets	Reports the current count for test packets received by the device on the connection selected by CxpConnectionSelector	CxpConnectionTestRxPacketCount [CxpConnectionSelector]	Integer (8 bytes)						
Connection Test TX packets	Reports the current count for test packets sent to the device on the connection selected by CxpConnectionSelector	CxpConnectionTestTxPacketCount [CxpConnectionSelector]	Integer (8 bytes)						

Table 24 : CoaXPress connection test parameters

International Distributors

Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de

In Great Britain: Zerif Technologies Ltd. Winnington House, 2 Woodberry Grove Finchley, London N12 0DR +44 115 855 7883, info@zerif.co.uk www.zerif.co.uk