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Reducing the amount of data needed to store and/or transmit 
image data is important in industrial machine vision, surveillance 
and military imaging systems. In this article, you will learn the 
features advantages and benefits of the JPEG compression 
algorithm and how to implement code running on 
inexpensive PC-based graphics processors from NVIDIA 
to perform this task. 
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Using graphics processors for image compression 

 

By Philippe Candelier, Chief Technical Officer (CTO), Norpix (Montréal, Québec, Canada; 

www.norpix.com). 

 

The CUDA parallel computing platform and application programming interface (API) allows 

fast JPEG image compression on GPUs. 

 

Image compression plays a vitally important part in many imaging systems by reducing the 

amount of data needed to store and/or transmit image data. While many different methods exist 

to perform such image compression, perhaps the most well-known and well-adopted of these is 

the baseline JPEG standard. 

 

Originally developed by the Joint Photographic Experts Group (JPEG; https://jpeg.org), a 

working group of both the International Standardization Organization (ISO, Geneva, 

Switzerland; www.iso.org) and the International Electrotechnical Commission (IEC, Geneva, 

Switzerland; www.iec.ch), the baseline JPEG standard is a lossy form of compression based on 

the discrete cosine transform (DCT). 

 

Although a lossless-version of the standard does exist, it has not been widely adopted. However, 

since the baseline JPEG standard can achieve 15:1 compression with little perceptible loss in 

image quality, such image compression is acceptable in many image storage and transmission 

systems. 

 

Graphics acceleration 

 

In the past, JPEG image compression was performed on either host PCs or digital signal 

processors (DSPs). Today, with the advent of graphics processors such as the TITAN and 

GEFORCE series of graphics processors from NVIDIA (Santa Clara, CA, USA; 

www.nvidia.com) that contain hundreds of processor cores, image compression can be 

performed much faster (Figure 1). Using the company’s Compute Unified Device Architecture 

(CUDA), developers can now use an application programming interface (API) to build image 

compression applications using C/C++. 

 

Because the CUDA provides a software abstraction of the GPUs underlying hardware and the 

baseline JPEG compression standard can be somewhat parallelized, the baseline JPEG 

compression process can be split into threads that acts as individual programs, working in the 

same memory space and executing concurrently. 

 

Before an image can be compressed, however, it must be transferred to the CPU’s host memory 

and then to the GPU memory. To capture image data, standards such as GenICam from the 

European Machine Vision Association (Barcelona, Spain; www.emva.org) provide a generic 

interface for GigE Vision, USB3 Vision, CoaXPress, Camera Link HS, Camera Link and 1394 

DCAM-based cameras that allow such data acquisition to be easily made. When available, a 

GenTL Consumer interface can be used to link to the camera manufacturer’s GenTL Producer 

(Figure 2).  
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Using Microsoft Windows this is provided as a Dynamic-Link Library (DLL) with a .CTI file 

extension). If there is no GenTL Producer, then it is usually mandatory to use the native camera 

or a frame grabber manufacturer’s application programming interface (API) for retrieving 

camera data. Once captured, image data can be transferred to the GPU card’s multiple Gigabyte 

memory using the cudaMemcpy function. An example of how this can be achieved can be found 

at http://bit.ly/2r17JRd. 

 

However, using the cudaMemcpy function is not the fastest method of transferring image data to 

the GPU memory.  A higher bandwidth can be achieved between CPU memory and GPU 

memory by using page-locked (or “pinned”) memory.  Since the GPU cannot access data directly 

from pageable host memory because it has no control over when the host operating system may 

choose to move such data, when a data transfer from pageable host memory to device memory is 

invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array, 

copy the host data to the pinned array, and then transfer the data from the pinned array to device 

memory. This can be achieved by allocating pinned host memory in CUDA C/C++ 

(http://bit.ly/2rTxcPB).  

 

There is also a third approach to overcoming the data transfer speed between the host and GPU 

memory. Allowing a frame grabber and the GPU to share the same system memory, eliminates 

the CPU memory copy to GPU memory copy time and can be achieved using NVIDIA’s Direct-

for-Video (DVP) technology. However, because NVIDIA DVP is not currently available for 

general use BitFlow (Woburn, MA, USA; www.bitflow.com), a frame grabber manufacturer, has 

chosen to publish BFDVP (BitFlow Direct-for-Video Protocol), a wrapper of NVIDIA DVP, 

designed to enable integration of its frame grabber API with NVIDIA GPUs 

(http://bit.ly/2qPiIRo). 

 

 

Bayer interpolation 

 

Before image compression can occur, the data from the image sensor in the camera must be 

correctly formatted. Most of today’s color image sensors, use the Bayer filter mosaic, an array of 

RGB color filters arranged on a grid of photosensors (Figure 3). Named after the late Bryce 

Bayer (1929–2012) who invented it while working for Eastman Kodak (Rochester, NY; USA; 

www.kodak.com), the filter uses twice as many green elements to mimic the physiology of the 

human eye. His idea dates to May 29th, 1974 and his original handwritten concept can be found 

at http://bit.ly/2q5Y9OF. 

 

Since the Bayer mosaic pattern produces an array of separate R, G and B pixel data at different 

locations on the image sensor, a Bayer demosaicing (interpolation) algorithm must be used to 

generate individual red (R), green (G) and blue (B) values at each pixel location. Several 

methods exist to perform this interpolation including bilinear interpolation 

(http://bit.ly/2q89VGw), linear Interpolation with 5x5 kernels (http://bit.ly/2r3a8di), adaptive-

homogeneity-directed algorithms (http://bit.ly/2qWOB9I) and using directional filtering with an 

a posteriori decision (http://bit.ly/2pAmU1U) each of which has their own quality/computational 

tradeoffs.  

http://bit.ly/2r17JRd
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Although adaptive-homogeneity or directional filtering can be implemented on the GPU, linear 

interpolation with a 5x5 bi-linear Bayer interpolation on the GPU provides higher performance 

in high-speed video compression applications. 

Such algorithms are often implemented using field programmable gate arrays (FPGAs) 

embedded in the camera or the frame grabber that is used to capture image data. When raw 

image data is captured from color cameras to host memory, Bayer interpolation can also be 

performed on a GPU.  

 

After such interpolation, white balancing of the image may be required to ensure that objects 

which appear white are, in fact, rendered white in the resulting image (http://bit.ly/1vMa7LT). 

This is accomplished, for instance, by computing statistics for each color in the input image and 

applying scaling factors so that the output image has an equal amount of each color.  

 

Color space conversion 

 

Color data can be reduced by transforming the RGB images into the YUV color space (or more 

accurately the Y'CbCr color space where Y’ represents luminance and the U and V components 

represent chroma or color difference values. Y'CbCr values can be derived by subtracting the Y’ 

value from the R and B components of the original image using a simple formula 

(http://bit.ly/2q6m409). 

 

YUV supports three different conversion and subsampling modes known YUV (4:4:4), YUV 

(4:2:2), YUV (4:2:0) and YUV (4:1:1).  Unfortunately, the notation used to describe these 

conversion modes is not intuitively obvious since the subsampling patterns are not described in 

terms of how pixels are subsampled in horizontal and vertical directions 

(http://bit.ly/2qWRbN0). 

 

Generally, the YUV (4:4:4) format, which samples each YUV component equally, is not used in 

lossy JPEG image compression schemes since the chrominance difference channels (Cr and Cb) 

can be sampled at half the sample rate of the luminance without any noticeable image 

degradation. In YUV (4:2:2), U and V are sampled horizontally at half the rate of the luminance 

while in YUV (4:2:0), Cb and Cr are sub-sampled by a factor of 2 in both the vertical and 

horizontal directions. 

 

Perhaps the most commonly used mode, for JPEG image compression, the YUV (4:2:2) mode, 

can thus reduce the amount of data in the image by one-third over the original RGB image before 

any image compression occurs while providing little visual difference to the original image. 

Source code to perform this conversion in C++ can be found at http://bit.ly/2pCBFBW. 

 

To perform within a GPU this color space conversion (and other functions associated with 

baseline JPEG compression), a knowledge of the architecture of the graphics processor is 

required (http://bit.ly/2sDKZ9X). Suffice to say that threads (the smallest sequence of 

programmed instructions that can be managed independently by the scheduler) are organized in 

blocks. These blocks are then executed by a multiprocessing unit (MPU). To perform high-speed 

calculations, data must be organized efficiently in memory so that the block of threads can 

http://bit.ly/1vMa7LT
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operate autonomously. Thus, fetching data between blocks will slow performance as will the use 

of IF branches.     

 

Bayer interpolation, color balancing and color space conversion can all be performed on the 

GPU. To perform these tasks, the image in the GPU is split into a number of blocks during which 

they are unpacked from 8-bit to 32-bit integer format (the native CUDA data type). For each 

block, pixels are organized in 32 banks of 8 pixels as this fits the shared memory architecture in 

the GPU. This allows 4 pixels to be fetched simultaneously by the processor cores of the GPU 

(stream processors) with each thread reading 4 pixels and processing one pixel at a time. 

 

In such implementations, it can be assumed that the color balance required will be consistent 

over time especially if lighting conditions are controlled. By capturing a template image into host 

memory, a look-up-table can be created that can then be uploaded to the GPU memory to apply a 

scaling factor to each pixel so that the resultant image has an equal amount of each color. After 

this task is performed by the GPU, each pixel is converted to a 32-bit floating point value and 

converted to the YUV color space. Blocks are then saved to the GPU global memory.  

 

Transforming discretely 

 

After images are transformed from RGB to YUV color space, the JPEG algorithm is applied to 

each individual YUV plane (Figure 4). At the heart of the JPEG algorithm is the discrete cosine 

transform (DCT). This is used to transform individual 8 x 8 blocks of pixels in the image from 

the spatial to frequency domain. A CUDA-based version on one implementation of this algorithm 

can be found at http://bit.ly/2pFGSZP. 

 

The input to the forward discrete cosine transform (FDCT) is an array of 8x8 pixel blocks which, 

after the DCT is applied, result in a block of 8 x 8 frequency coefficients where vertical 

frequencies increase from left to right and horizontal frequencies increase from top to bottom. 

Thus, the representation of the image is concentrated in the upper left coefficients of the output 

matrix.  

 

In the next step of the JPEG algorithm, quantization is used to further compress the luminance 

and color difference values of the frequency coefficients. Quantization tables are used to vary the 

amount of compression used and thus, allow output image quality to balance image quality and 

compressed image size. While the JPEG committee does not provide any standard quantization 

tables, two example tables can be found at http://bit.ly/2r7cjN7.  
 
To perform this task on the GPU, the image is again split into a new set of CUDA blocks that run 

64 threads (each computing a DCT) to perform a DCT on each block of the Y component of the 

image. After this, each pixel coefficient is converted back to 32-bit integer values and a 

quantization table is applied to each DCT coefficient. An explanation of how this is 

accomplished using CUDA can be found at: http://bit.ly/2ra9aPi. This process is then repeated 

for both the U and V image components, using a different quantization table for the U and V 

component.  

 

http://bit.ly/2pFGSZP
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After quantization, the (lower frequency) coefficients towards the top left of the 8 x 8 image 

matrix corner will be of higher value than those at the bottom right. To take advantage of this, 

before images are run-length encoded, a process known as Zig-Zag ordering is used to rearrange 

the coefficients in a one-dimensional order such that higher frequencies that may be represented 

as zero values after quantization can be encoded more efficiently. 

 

Zig-Zag ordering 

 

Zig-Zag ordering is applied to each of the Y, U and V components separately and two different 

quantization tables are used for both the Y and UV components. This information is then 

variable-length encoded using Huffman encoding. Again, two different encoding tables are 

applied to both the Y and UV components. Once again this can be implemented on the GPU 

(http://bit.ly/2qaRbrw).  

By loading both the JPEG Luma and Chroma Huffman encoding lookup tables (LUTs) and Zig-

Zag mapping LUTs to the GPU both Huffman and Zig-Zag encoding can be performed in a 

single step on the GPU.  

By default, the JPEG compression standard defines the size of a Minimum Coding Unit (MCU) 

as being an 8x8 coefficient. By assigning these 64 coefficients to a single shared memory bank, 

up to 32 MCUs can be processed simultaneously.  

To compute Zig-Zag ordering mapping table and run-length encoding (RLE) classification, 32 

threads are used to process the 32 banks and then Huffman encoding is performed using the 

standard JPEG Huffman encoding lookup table. This process is repeated for each MCU block to 

process the Y, U and V image component planes. 

Encoded data is then written to the JPEG File Interchange Format (JFIF), a format that includes 

the embedded encoded image data and coding and quantization tables. This packing step is not a 

trivial task to implement on a CPU and is typically a sequential process.  

Parallelizing this function on a GPU requires a different approach. Initially, the first bit position 

of each MCU in the final JPEG buffer is calculated using a parallelized prefix sum algorithm 

(https://en.wikipedia.org/wiki/Prefix_sum). Knowing the offset position, each MCU can then be 

parallel pack data using the stream processors of the GPU.  

After such packing, the data is then moved to the host memory for either archiving or streaming. 

Using the data in this JFIF image file, JPEG decoders can reconstruct the compressed image 

data.  

Deciding on which GPU to use to implement baseline JPEG algorithms is important as 

compression speeds will depend on the number of multiprocessors, amount of shared memory 

size and number of register (Figure 5). For instance, adding more CUDA cores without 

increasing shared memory size or the number of registers will not increase performance. After 

image compression, images can be copied to the CPU’s host memory or archiving or data 

streaming. Although the GPU to host memory copy time is significant, compressed image data 

will generally be 10-20x smaller than the original uncompressed image. 

As an example, the StreamPix 7 multiple camera DVR software from Norpix (Montréal, Québec, 

Canada; www.norpix.com), optimized for NVIDIA CUDA graphics processors can JPEG 

compress 3.3 billion monochrome pixels or 2 billion color pixels per second using an NVIDIA 

http://bit.ly/2qaRbrw
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GTX1080. Using the software, capturing and compressing 12-Megapixel (4096 x 3072 8-bit raw 

Bayer images) at 40fps from four CoaXPress (CXP) cameras simultaneously can be achieved 

using baseline JPEG image compression, preserving 75% image quality and allowing a 10-15x 

increase in image data storage compared to methods that record raw uncompressed image data. 

 

Disclaimer 

 

While Norpix’s StreamPix 7 multiple camera DVR software uses an implementation of the 

baseline JPEG standard, references to code samples used in this article are for illustration 

purposes only. Norpix nor its affiliated companies or customers are responsible for the 

development or use of this code. 

 

Figure captions 

 

 
 

Figure 1: With 1536 CUDA cores (processors) and a 1GHz base clock rate, the GeForce GTX 

680 from NVIDIA can JPEG-encode raw Bayer data camera images at a rate of 500Million 

pixels/s. Image courtesy of NVIDIA (Santa Clara, CA, USA; www.nvidia.com). 

 

http://www.nvidia.com/


 
 

Figure 2: Standards such as GenICam provide a generic interface for multiple cameras that 

allow image data to be easily transferred to host memory. If a GenTL transport layer interface is 

available, then a GenTL Consumer interface (shown here) can be used to link to the camera 

manufacturer’s GenTL Producer. 

 

 
 

Figure 3: Most of today’s color image sensors, use the Bayer filter mosaic, an array of RGB 

color filters arranged on a grid of photosensors. Image courtesy of Wikipedia 

(https://en.wikipedia.org). 

 

 
 

Figure 4: In the implementation of the baseline JPEG standard using color cameras, Bayer 

interpolation is first used to render the image in RGB space. Images are then transformed from 

RGB to YUV color space, DCT applied followed by quantization, zig-zag re-ordering and run-



length encoding. The resultant data is then written to a JFIF format that includes the embedded 

encoded image data and coding and quantization tables. Image courtesy of Ganapathy Mani, 

George Washington University (Washington, DC, USA; www.gwu.edu). 

 
 

GPU Model Monochrome Raw Bayer 

GTS450 500 million pixels/s 180 million pixels/s 

GTX580 1.5 billion pixels/s 500 million pixels/s 

GTX660ti 744 million pixels/s 325 million pixels/s 

GTX680 1.5 billion pixels/s 500 million pixels/s 

GTX760 700 million pixels/s 300 million pixels/s 

GTX960 778 million pixels/s  

Titan Black 1.6 billion pixels/s 686 million pixels/s 

GTX1080 3.3 billion pixels/s 2.2 billion pixels/s 

* The number of pixels per second is defined as: Image size X * Image size Y * frame rate per second. 

 

 

Figure 5: Deciding on which GPU to use to implement baseline JPEG algorithms is important as 

compression speeds will vary. Table courtesy of Norpix (Montréal, Québec, Canada; 

www.norpix.com). 
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